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CHAPTER ONE

INTRODUCTION

1.1. Overview and Previous Work

Traditional surveillance and communication systems use centralized

signal processing for the detection, identification and tracking of

targets. In these systems, the received observations are transmitted

to the central processor (detector) where classical hypothesis testing

procedures are employed for signal processing [1,2]. The hypothesis

testing procedures can be classified into two major categories

depending on the test duration or the number of observations to be

processed. In fixed-sample-size (FSS) hypothesis testing procedures a

fixed number of observations are taken before the test can be executed.

The sample size is determined by the performance level to be achieved.

A variety of approaches such as the Bayesian approach and the Neyman-

Pearson approach can be employed in FSS detection. Contrary to the FSS

procedures, the sequential procedures have a random test duration

depending on the actual observations and the test thresholds. These

procedures provide a significant advantage over FSS test procedures in

terms of test length. For specified values of the error probabilities

x and 0 (where a and 0 are the error probabilities of the first and

second kind, i.e., probabilities of false alarm and miss respectively),

and known probability distributions, the sequential procedures, on the

average, require significantly less number of observations than the FSS

test procedures (3-5]. The sequential probability ratio test (SPRT) of

Wald (1,5] is known to be optimal among all sequential test procedures.
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Distributed detection systems have become an attractive alternative to

the convential centralized detection systems for processing large

quantities of data received from physically distributed sensors. The

decomposition of processing is essential for controlling the complexity of

data processing and to meet the needs for real-time results. Moreover,

limited communication is often necessary due to physical bandwidth

constraints combined with the desire to limit or reduce the effect of

possible jamming, thereby increasing the system survivability. Distri-

buted processing is the natural way to handle a situation in which

various sensors with different sensing techniques, such as sonic, micro-

wave and infra-red sensors are employed. These decentralized systems

exhibit the advantages of higher reliability, survivability, and shorter

decision time than their centralized counterparts (7,8].

Distributed FSS detection systems have received an increasing interest

over the past several years. Different approaches have been used to

analyze these systems. Tenney and Sandell (7) introduced distributed

detection using a fixed fusion center and used the Bayesian approach to

optimize the local detectors. Chair and Varshney (9) fixed the local

detectors and used the Bayesian approach to optimize the fusion center.

Hoballah and Varshney [10] using the Bayesian approach combined the

results in (7,9] and optimized the entire distributed detection system.

Reibman and Nolte (11] showed how to use numerical approaches to find

globally optimum system for a particular detection problem. Srinivasan

(12] considered the Neyman-Pearson criterion for system optimization. He

fixed the fusion center and optimized the local detectors. Hoballah and

Varshney (13] jointly optimized the entire distributed detection system
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using the Neyman-Pearson criterion. Thomopoulos and Okello (14] considered

a distributed system in which the primary detector communicates with the

consultant detector only when the primary detector can not decide on one

of the hypotheses. The majority of the distributed detection systems

(7-13] allow the transmission of only one-bit decisions (hard decisions)

from local detectors to the fusion center. However, some distributed

detection systems [15-17] allow the transmission of multi-bit local

decisions (soft decisions) to the fusion center. These soft decision

distributed detection systems have the advantage of improved performance

over their hard decision counterparts at the expense of increased

communication (channel capacity) as well as increased analysis and

processing complexity.

The decentralized sequential detection problem has been investigated

in (18-20], In [18], Teneketzis formulated and solved a decentralized

version of the Wald problem with two decision makers. In his model, each

detector was given the flexibility of either stopping and making a de-

cision or continuing to the next stage. The coupling between the two

local detectors was introduced through a common cost function and the

objective was to minimize the cost. He showed that the person-by-person

optimal policies of the local detectors are described by thresholds which

are coupled. More specifically, the thresholds of detector 1 at any stage

depend on the thresholds of detector 2 at all stages. For a two-detector

N-stage detection system, he showed that the thresholds are determined by

solving a set of 4N-2 nonlinear algebraic equations in 4N-2 unknowns.

Hashemi and Rhodes [19) examined a two-step, two-detector, sequential

hypothesis testing problem with data fusion center. They also discussed

its straightforward extension to a decentralized multi-stage sequential
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detection problem. Their model is different from the one examined in

[18]. In (19), the sequential test is carried out at the fusion center

and local detectors have no control over the termination of the test.

Chair et al. (20] obtained a decentralized version of the SPRT for the

same model as in (18]. However, they used the Neyman-2earson approach

for the solution of the problem. In [18-20], the computation of thresh-

olds was quite complicated due to the fact that the thresholds aze

coupled at all stages. Moreover, the emphasis was solely on the computa-

tion of the optimal thresholds. The performance of the schemes was

totally ignored. Therefore, it is desirable to explore alternate struc-

tures and schemes for distributed sequential detection where the thresh-

olds are easier to obtain, and the performance of the schemes can be

evaluated.

In this report, we consider alternate sequential detection schemes

and evaluate their performance. The sequential procedures presented

here are generalizations of the classical sequential procedures [1,21-

27] to a distributed environment. Two important functions frequently

used to evaluate the performance of an SPRT, namely the average sample

number (ASN) function, and the operating characteristic (OC) function,

are evaluated for the various schemes considered. These schemes have

the desired advantages of distributed detection system over their

centralized counterparts, and, in addition, their performance is easier

to evaluate than the schemes in (18-20].

1.2. Report Organization

In this report, we consider some distributed sequential detection

systems and evaluate their performance. Most of the distributed
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systems considered here are parametric where an exact knowledge of the

observation statistics is assumed. The only exception is the non-

parametric distributed system considered in Chapter Seven, where the

observation statistics are not known completely.

In Chapter Two, we describe the sequential probability ratio test

(SPRT) of Wald [1). Concepts such as average sample number (ASN) func-

tion and operating characteristic (OC) function, which are essential in

evaluating the performance of sequential test are introduced in some de-

tail. Alternate approaches to obtain the exact expressions [28,29] ci

the OC and ASN functions are also described.

In Chapter Three, an SPRT based on quantized multi-jtnsor observa-

tions is described and its performance is evaluated, It is shown that

for the same level of performance, thc ASN decreases monotonically by

increasing the number of local sensors. The issue of optimal quanti-

zation for sequential detection is studied, and the optimal quantizer is

shown to be a likelihood ratio quantizer. Moreover, we show that the

quantizers obtained as a result of a joint optimization are the same as

those obtained when each local quantizer is optiriized independently. The

specified performance level in terms of error probabilities is shown to

be achievable despite channel errors at the expense of increased

ASN's. An example is presented to illustrate the results obtained in

this chapter.

In Chapter Four, we propose and analyze a simple sequential detection

scheme using multiple sensors. The performance expressed in terms of the

ASN is shown to improve monotonically with the number of local detectors

(sensors) used. Moreover, we show that when truncated, the sequential

test based on multiple sensors has a smaller increase in error proba-
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bilities than its single detector counterpart. A numerical example is

presented to illustrate the results of this chapter.

In Chapter Five, we generalize the SPRT of Wald to a distributed

system consisting of two local detectors and a global decision maker

(GDM). Each local detector performs an SPRT based on its own observations

and communicates its local decision to the GDM. The GDM combines the

local decisions according to a predetermined fusion rule, and decides

either to stop and accept one of the two hypotheses, or to continue. The

global error probabilities are shown to be functions of the local errot

probabilities and the fusion rule. The global test duration is obtained

for various possible fusion rules and its average is derived. An example

is presented for the case of two identical local detectors.

In Chapter Six, a modified sequential detection procedure is proposed

and analyzed. The structure of the distributed system is the same as that

considered in Chapter Five. Each local detector takes a group of No

observations, performs a likelihood ratio test, and decides either in

favor of one of the hypotheses or declares its inability to decide. The

local decisions (including no decision) are transmitted to the GDM which

combines the local decisions according to a predetermined fusion rule, and

decides either to stop the local tests and accept one of the hypotheses or

to continue. When the global decision is to continue, the detection

process is repeated ignoring all previous stages. rhe binary and M-ary

hypothesis testing problems are considered. A truncation scheme to

limit the number of observations from being excessively large is proposed

and analyzed. Numerical results are presented to illustrate the

performance of the system.

In Chapter Seven, the nonparametric sequential conditional sign test
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of Shin and Kassam (22) is first studied and modified. The modified test

has fixed thresholds that are independent of the observations and, there-

fore, it does not require the table look-up operation. Both the sign and

conditional sign nonparametric sequential tests (22] are generalized to a

distributed system of two local sensors (or detectors). The rebulcing

tests are shown to maintain the desirable nonparametric property. A

numerical example is presented for illustration.

In Chapter Eight, a summary of results, conclusions, and suggestions

for future research are presented.
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CHAPTER TWO

PRELIMINARIES

In this chapter, we briefly review Wald's sequential probability

ratio test (SPRT). Some terminology and notation are introduced. The

modeling of SPRT as a finite state Markov chain is also discussed.

2.1. Wald's Sequential Probability Ratio Test

Consider the problem of testing a simple hypothesis H0 versus a simple

alternative H1. Let f(x,0) denote the probability density function of

the random variable x representing the observation (sample) under

consideration. Let H0 be the hypothesis that 0 = 00, and H1 the hypo-

thesis that 0 = 01. Thus, the distribution of x is given by f(x,0.) when
]

H. is the true hypothesis ,j=0,1. The successive observations on x areJ

denoted by xlX 2,... x n(n 1) and they are assumed to be statistically

independent and identically distributed (iid). For any positive integer

n, the conditional probability density function of x given H. is given

by

n

x/H 11 f(xi,0 I j=0,1 (2.1)
-n j i l

where x =(x x 2 ...x ] is the observation vector.

Wald's SPRT for testing H0 against H1 is defined as follows: Two

positive constants t and t (t > t ) are chosen. At each stage of

testing (n, n 1), the likelihood ratio function A defined below isn

computed.
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A = f /H/f /H (2.2)

The likelihood ratio function in (2.2) is compared to the thresholds tu

and t z as follows:

t u, stop and decide H 1

An : tu stop and decide H0  (2.3)

otherwise, continue

The choice of the test thresholds depends on the desired values of the

error probabilities a and 1, where (X is the probability of deciding H1

when H0 is true, and 0 is the probability of deciding H0 when H1 is the

true hypothesis. It has been shown [1 that the approximation of the

thresholds

t (1 - 1)/ru

(2.4)

tZ P/(1-a)

is sufficiently accurate for all practical purposes and, consequently, it

is widely used in the literature.

The monotonicity of the logarithm function enables us to derive a

more convenient test by simply taking the logarithm of (2.3). The re-

sulting test is given by

a log t , stop and decide H1

log An j log tt , stop and decide H0  (2.5)

otherwise, continue

Taking the logarithm of the likelihood function in (2.2), we obtain

n f(xi,e 1log An = log f(xi, 0 (2.6)

i=l 1 0

9



Denoting the ith term of the sum in (2.6) by Zi, i.e.,

f (xi,e lZ. log
S =  g f(x 8 1 (2.7)

the test procedure can be described as follows: At each stage of the

test (n, n 1), the sum Z1 + Z2 + ... + Zn is computed, and the follow-

ing test is performed

n log t , stop and decide H1

7 Z 5 log tt , stop and decide H0  (2.8)

otherwise, continue

The performance of an SPRT is characterized in terms of the operating

characteristic (OC) and average sample number (ASN) functions. These are

discussed next.

2.2. The OC Function of the SPRT

The operating characteristic function L(O) of an SPRT is defined as

the probability that the sequential testing procedure will terminate with

the acceptance of the hypothesis H0 when 8 is the actual value of the

parameter. This is necessary in situations where the exact knowledge of

the parameter(s) of the distribution function is not available. An

approximate formula for L(O), neglecting the excess of the likelihood

function An over the test thresholds t and t at the termination stage

is given by [1)

h(8)t - 1

L(8) u (2.9)h(8) h(O)tu - t
u

10



where h(e) is the unique nonzero solution of the equation

00f(x,O I)jh(e)

f(x,8 0  f(x,8) dx = 1 (2.10a)

-00

when x is a continuous random variable, and h(8) is the unique nonzero

solution of the equation

f (x'Oe )I1 h(O)

T F f(X,00) f(x,O) = 1 (2.10b)

when x is a discrete random variable. The summation in (2.10b) is

clearly over all possible values of x.

From (2.10a) and (2.10b), it is obvious that h(O 0)=l and h( 1)=-l.

Therefore, it follows from (2.9) that for t and t as given by (2.4), weu

have L(O 0) = 1-a, and L( 1) = 0 as required.

2.3. The ASN Function of the SPRT

Let n denote the number of observations required for the terminat'in

of the sequential test, and let Ee(n) denote the expected value of n when

0 is the true value of the parameter. E0 (n) is a function of 0 and is de-

fined :o be the average sample number (ASN) . Following Wald (13 in neg-

lecting the excess of A over the thresholds at the termination stage, itn

can be shown that E0 (n) is given by

L(O) log tE + (1- L(O)] log tE0 (n) - u () 0 %. 0 (2.11)
0E 0 (Z i )  ' •

waere Z. is as defined by equation (2.7), and E0 (Zi) is given by

E (Z ) = log f(x I1) f(x,0) dx (2.12)i f(x,O 0 )

00



when x is a continuous random variable. When x is a discrete random

variable, equation (2.12) becomes

E(Z i) = - f'8 f(x,e) (2.13)

When E (Z ) 0, we denote 0' the value of 0 such that E0 (Zi) = 0. In this

case (1], the expression for E0,(n) is given by

- log tZ log t

O,(Z.)

and the corresponding OC function is given by

log tL(0') lougt2.15

log t U- log t(

It should be emphasized that the expressions for the OC and ASN func-

tions as given by (2.9) and (2.11) respectively, are approximate in that

they were derived under the assumption of no excess over the test thresh-

olds. It is possible to derive the exact expressions for the OC and ASN

functions only when the random variable Z. defined by (2.7) can take a1

finite number of values which are integral multiples of a constant.

Using the characteristic function of the test duration, Wald [1] derived

expressions for the probability distribution of the test duration as well

as exact expressions for the OC and ASN functions. The solution of

Wald's equations has been simplified by Girshick (30] who reduced the

solution to that of solving a set of simultaneous equations. In the re-

mainder of this chapter, we present a totally different approach to the
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computation of the exact values of the OC and ASN functions as well as

the exact distribution of the test length (duration). The approach in

the next section is based on a formulation of the sequential test as a

random walk on a finite number of states using the transition probability

matrix.

2.4. The Transition Probability Matrix Formulation of the

Sequential Test

In this section, we describe an alternate approach for the evalu-

ation of the exact distribution of the sequential test length as well as

the corresponding CC and ASN functions. The approach requires that the

step Z. as defined by (2.7) be finite-valued and takes values that1

are integral multiples of a constant. This facilitates the formulation

of the SPRT as a random walk (Markov chain) on a finite number of states

and its complete description by the specification of its transition proba-

bility matrix. Proakis [28] described the random walk formulation

approach and derived the exact distribution of the test length T and the

ASN for quantized radar signals. The same approach is described in more

detail in [29] which is the basis for the material presented here.

Consider a Markov chain with a state space made up of (N+l) states

given by 0,1,2,...,N. Let S denote the state at stage n and P(n). denote
n i3

the probability of being in state j after n transitions starting in state

i, i.e.,

P.(n) = Pr {S = j/S0 = i} (2.16)

(n)States 0,1,...,r-1 are transient in that limP.. = 0 for 0 i,j:r-1,
n-oo i j

while states r,r+l,...,N are absorbing, and P.. = 1 for r:i N. As n

13



approaches -, the process will ultimately be absorbed in one of the

absorbing states.

The stochastic process is described by the transition probability

(1) Amatrix whose (ij)th element is P.. P 2.. and which can be represented in

the partitioned form as follows

E= ] (2.17)

where 0 is an (N-r+l) X r matrix all of whose components are zero, T i,

an (N-r+) x (N-r+!) identity matrix and Q.. = P.. for 0_i,j < r-1.

A straightforward matrix multiplication shows that the nth power of P

is given by

[ :n (I+,+...+,n-1
pn = (++..Q(2.1S,

0 I J

Let W = I + Q +...+ Q upon rewriting Wn , we obtain

Wn = I + Q(I + Q +..,,+ Qn-l)

= I + Q Wn-1 (2.19)

In the limit, we have

W = lim Wn (2.20)
- n-)oo-

Combining (2.19) and (2.20), we arrive at

W= I + Q W (2.21)

which can be written as

(I - Q)W - 1 (2.22)

From (2.22), we observe that W = (I-Q)- 1, the inverse of (I-Q). The

matrix W is called the fundamental matrix associated with Q. The ASN is

14



obtained by ccunting the number of visits to all transient states knowing

that the process started in the ith transient state. In other words, we

have
r-1

ASN = Wi. j , 0 -< i 5 r-1 (2.23)

3 --o

Turning to the termination probabilities, i.e., the probabilities with

which the process will be absorbed in one of the absorbing states,

Recall that the states k=r,...,N are absorbing. Since such a state

cannot be exited once entered, the probability of absorption in a

particular absorbing state k up to time n and starting from initial state

i, is simply

(n) =P{ n =kS
P i = PrS = k/S = i} 0 < i < r-l and r < k - N (2.24)
ik n 0

In terms of the test length T, we can write

P(n) = Pr[T 5 n and S = k/S0 = il ,0 < 1 < r-1 and r 5 k N (2.25)
ik T 0

where T = min n ;? 0: r ! S < N} is the termination time. Letn

U(n)ik = Pr{T _< n andST = k/S0 = i}, 0 . i 5 r.-i and r 5 k < N (2.26)

Referring to (2.18), (2.24) and (2.25), we give the matrix Un by

Un = (I + Q + ... + Qn-1 )R (2.27)

which can be simplified using (2.19) to obtain

Un _W n-1R (2.28)

Taking the limit as n - , we obtain the absorption probabilitV matrix

15



U in terms of the fundamental matrix W as simply U = W R, or

r-1
= T Wi Rjk , 0 i r-1 and r 5 k 5 N (2.29)

It shculd be emphasized that equation (2.29) gives the exact value of the

termination probability to state k starting from state i, and therefore, it

can be used to ensure the specified error probabilities, On the other

hand, (2.26) through (2.28) give the cumulative probability of termina-

ton in state k starting from state i. Therefore, summing over all k, we

obtain
N

Pr{T n} = U(n )  (2.30)T ik (.0

which gives the cumulative probability distribution of the test length

given that the process started in state i, i.e., So = i.

In the above analysis, we assume that the transition probability

matrix is given and obtain the ASN and termination probabilities.

However, while applying the theory to the sequential hypothesis testing

problem, it is clear that we have to deal with two transition probability

matrices each corresponding to one of the two hypotheses. Moreover, the

set of absorbing states has to be partitioned into two groups each

corresponding to a decision in favor of one of the hypotheses. The OC

function can be easily found by summing the probabilities of termination

in all the states assigned to H0 decision provided that the transition

probability matrix which represents the true parameters is used.

This formulation will be used in the later chapters to illustrate the

concepts developed.
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CHAPTER THREE

A SEQIJENTIAL PROBABILITY RATIO TEST BASED

ON MULTISENSOR DATA

3.1. Introduction

In binary hypothesis testing, it is well known that sequential test

procedures provide a significant advantage over fixed-sample size (FSS)

test procedures (1,3-5]. For prespecified values of the error probabil-

ities a and 0 (where a is the probability of error of the first kind and

P is the probability of error of the second kind), the sequential

procedures, on the average, require a substantially less number of obser-

vations (samples) than FSS test procedures. The sequential probability

ratio test (SPRT) of Wald [1) is known to be optimal among all possible

sequential test procedures.

In this chapter, we generalize Wald's SPRT to a distributed system

consisting of M local sensors and a global (central) decision maker as

shown in Fig. 3.1. In Section 3.2, we define the observation model,

formulate the centralized SPRT based on multisensor data, and derive an

expression for the global average sample number ASN. when the hypothesisJ

H., j=0,1, is true. Moreover, we show that ASN. is a monotonicallyJ j

decreasing function of the number of local sensors used. In most

multisensor detection systems, a bandwidth constraint on the com-

munication channels carrying data from local sensors to the global de-

cision maker (GDM) is assumed. Therefore, it is often necessary to com-

press the data locally prior to transmission. In Section 3.3, we quantize

each of the local observations into two levels and transmit the quantized

value to the GDM for further processing. The issue of optimal
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I1 I Local Sensor #1

.. Local Sensor #2 DeGlobal~~Decision u

Maker

Fig. 3.1: A distributed system consisting of M local sensors

and a global decision maker.
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quantization is studied in some detail, and it is shown that a globally

optimum design of the quantizers is obtained by optimizing the individual

local quantizers independently. Also, it is shown that an optimal local

quantizer is based upon the quantization of the local likelihood ratio

(LR). In Section 3.4, we show that ASN. is a monotonically decreasingJ

function of the number of bits used for local quantization. In Section

3.5, we consider a distributed system consisting of two identical local

sensors. The SPRT at the GDM is formulated as a random walk (28,29) on a

finite state Markov chain and the effect of transmission errors is inves-

tigated. Two cases are studied. In the first case, it is shown that when

the transmission errors are neglected, the result is an increase in the

error probabilities over their specified values. It is shown in the

second case that when the transmission errors are incorporated in the de-

sign, the specified error probabilities are satisfied at the expense of an

increased ASNj, j=0,1. In Section 3.6, we present some numerical re-

sults for the system described in Section 3.5. Fina.ly, the results

obtained in this chapter are discussed in Section 3.7.

3.2. A Centralized SPRT for Multisensor Data

Consider the multisensor distributed system shown in Fig. 3.1 which

consists of M local sensors and a global decision maker (GDM). The

problem under consideration is that of testing a simple hypothesis H0

versus a simple alternative H Let f(xi., i) denote the probability den-

sity function (pdf) of the random variable X., i=l,2,...,M, which repre-i

sents the observation at the ith local sensor. Let H0 be the hypothesis

that 0i = 0 ' and H1 the hypothesis that 0 = il" Therefore, the pdf of

X. is given by f(x.,. ij) wher H., j=0,1, is true. The successive
i 19
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observations on X. are denoted by xi xi2,. .,x. (n > 1) and they are
I ili2' in

assumed to be iid. The observations are also assumed to be independent

from one sensor to the other, i.e., x. m is independent of xik (m # k), and

x Zm( * i). Each local sensor is assumed to process its own observa-

tion(s) and transmit the analog value of the local test statistic to the

GDM. At any observation time n(n > 1), the GDM computes the central

likelihood ratio (CLR) function A as follows
cn

Aon f (x (3.1)i=1 =1 Xik' i0

where f(xki, ij) = f(xi, 0ij). Equation (3,1) can be written as

M [n-1 f 0 f(Xin' 0il )

cn .Lk=1 f(x ) f(x.n (3.2)
i=1 = ik' io in

which is recognized as the product of the CLR at the (n-l)th stage

A and the nth increment An , where An is given by
c(n-1) c c

M f (x in ', 0 (An= iT in i
c i t(x 03.i=1 (in' i0

Hence

A = A *An
cn c(n-l) c

The centralized SPRT at stage n compares A with two thresholds [1] Aon

and B as follows

_> A , stop and decide H,

Acn 5 B , stop and decide H0  (3.4)

otherwise , continue

where A and B 2 - are the test thresholds. From the monoto-
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nicity of the logarithm function and the fact that A as well as Acn

and B are always positive, a more convenient test is derived by taking

the logarithm of both sides of (3.4) to obtain

( log A ,stop and decide H,

log Acn log B ,stop and decide H0  (3.5)

otherwise, continue

Taking the logarithm of the CLR in (3.2), we obtain

MA n-I f(xik, ii) f(Xin , (il) 6

cn = log f(xi, i + log f(x (3.6)

i=l k=l ik io in A

f(X ik, 0i )
ik log f(Xik 0 ) i=l,2,...,M; k2 1, to obtain

M [ n-i M n-i M
log Acn = 7-  [ : Zik + Zin = T T Zik + Zin (3.7)

i=l k=l i=l k=l i=l

Equation (3.7) shows that the local test statistic, Z ik k i, is simply

the logarithm of the local LR function. In other words, at any stage of

the test each local sensor computes the logarithm of its LR function

based on the current observation and transmits the result to the GDM

The GDM employs the received local test statistics to update its test

statistic log A according to (3.7). Because the successive observa-cn

tions at the ith sensor, i=i,2,...,M, are iid random variables, it

follows that Z ik, k 1, is also a sequence of iid random variables.

Assuming no excess over the test thresholds [1], it follows that when

H. is true and the test terminates, we have
J

21



l log A , with probability p,
log A = (3.8)

log B , with probability (1-p.)

where p0  a and p1  (1-0). Equating the expected values of both sides

of (3.8), we obtain

n M
E(log AcnA EiT YZik =pj log A + (1-p) log B (3.9)

k I1

n M
However, T T Zik is a random sum of iid random variables. Therefore,

k-=- ----1

its expected value is known L
2 9 ] to be

n M M M

Zik E ~nJ * E I Zj = E(n) * E(Z.] (3.10)

Therefore, ASN. = E(n/hJ is given by

p. log A + (1-p log B
ASN. M 1 , = (3.11)

J i 1 3/

Since ASN., j=0,1, is a positive real number, it follows that the denomi-J

nator and numerator in (3.11) must have the same sign. Moreover, it is

clear that if the ith sensor is used alone, then the denominator in (3.11)

is E(Zi/HJ], i=1,2,...,M. Therefore, E[Z./H.] must have the same sign as

the numerator of (3.11) provided that the ith sensor observations are

sufficient for detection, i.e., the ith sensor is reliable for detection.

The reciprocal of ASN. in (3.11) is given byJ

M
-1 ZJ E[Z./H.]

(ASN) j= (3-12)
j P. log A + (1-p.) log B (
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Let g.. = E[Zi/H.i/P. log A + (i-p.) log B}. Therefore

M
(ASN.) . - g (3.13)

For reliable local sensors, it is clear that gij > 0, i=l,2,...,M, and

j=0,1. Therefore, it follows that

M M-1 2
gi >  gij >  ""g > g (3.14)

-1
which shows that (ASN.) , the inverse of ASN. is a monotonically in-

3 J

creasing function of the number of local sensors. Consequently, it

follows that ASN. is a monotonically decreasing function of the number ofJ

local sensors used.

The centralized SPRT considered above is optimal in the sense that no

quantization was employed. However, its implementation requires an error

free transmission of analog observations or their analog sufficient sta-

tistics which is practically impossible to achieve. Therefore, we focus

our attention in the next section on the case when each local sensor quan-

tizes each of its individual observations into a binary-valued variable

prior to transmission.

3.3. The Multisensor Centralized SPRT with Quantized Data

In the previous section, it was assumed that each local sensor is

capable of computing the likelihood ratio function at its location and

transmitting the exact computed value to the central processor exactly.

In this section, we assume that each.local sensor quantizes its individual

observations into two distinct levels (one bit quantizer), namely 0 and 1.

The quantized local observations are communicated to the GDM where a
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centralized SPRT is performed. The binary quantization of the local

observations greatly reduces the communication channel bandwidth

required. In addition, it simplifies the implementation of the SPRT at

the GDM.

Consider the system shown in Fig. 3.2, which consists of M local

sensors followed by M local quantizers. The analog observations are as

defined earlier in Section 3.2. The ith quantizer Qi maps the successive

observations of the ith local sensor into a sequence of 0's and l's.

Therefore, the hypothesis testing problem is given by

H *y B(p0 ik io

i=1,2,...,, and k 1 (3.15)

1 :Yik Bil

where yik is the random variable representing the output of Qi corre-

sponding to the kth observation. B(p..) is a Bernoulli random variable
1)

with probability of success, i.e., y = 1, equal to p. . when H. is true.
ik 'j

The probability pij is given by

Pij J f(xi, 0ij) dx. (3.16)
Rlii

where R i is the region of the observation space in which Yi is assigned

the value 1. Clearly, the design of the ith quantizer Q. involves a

unique determination of the region Rli.

The centralized SPRT is performed at the central processor in a

manner identical to that described in Section 3.2. The only difference

is that Z = Z. is now a discrete two-valued random variable whose dis-

tribution when H. is true is given by
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112 . Local Sensor #1

x21 x22" G lobal
Local Sensor #2 Decision Uf

Maker

XM'X2'" ,]Local Sensor #M - QM

Fig. 3.2: A distributed system consisting of M local sensors

followed by M local quantizers and a global decision maker.
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log[(Pil)/(Pi0)] , with probability p.j

Zik = (3.17)
logf(l-p il)/(l-pi)] , with probability 1-pi j

From (3.17), we observe that the operation of the central processor can

M
be described in terms of a finite number of possible steps (.E Z.),

i.e., there are 2M possible steps corresponding to the 2M possible combi-

nations of the local observations. The values of these possible steps

are known and can be stored in a read-only-memory. To derive expressions

for the ASN's we follow the same procedure as used in deriving equation

(3.11). For the quantized observations case, (3.11) can be written as

follows

p. log i_ + (1-p.) log -

ASN. 2 M (3.18)
Z =1 [ Pij log[(Pil)/(p i 0 )]+ (i-pij) log[(l-pi l )/(1-pi 0 ) ]

It should be emphasized that (3.18) is derived under the assumption of no

excess over the test thresholds for given quantizers.

Next, we address the issue of optimal design of the quantizers QI

Q 2'..,QM and show that the optimal quantization is obtained by optimiz-

ing the local quantizers independently. To this end, let D. denote the
3

denominator of (3.18) when H. is true, and let D.. denote the
3 13

contribution of the ith quantizer to D.. Therefore, we can write

M
D. D.. (3,19)

Note that the numerator of (3.18) is fixed. Therefore, in order to
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minimize ASNj, D. must be maximized. However, maximization of the sum of

any number of functions is equivalent to the maximization of the summands

or individual terms. In other words, we can write

M
max (D.] = -) max [Dij (3.20)

QI'Q 2'''".Q M Q i

Let R* be the region R that corresponds to the optimal quantizer Q ,
li ii

and let p . be as defined in (3.16) with R being replaced by R*
J ii i"

Suppose that H is the true hypothesis, then with the optimal choice of

Q 's the maximum value of D1 , D*, is given by
1

M [ i*p*
D ~~~i (3ax.D]21P) il

= max (DT log + (1 - * log (3.21)
1P2 Pi 0J

QlI'Q2 Q.... 
1M

The expression for the maximum value of D O, D*, is obtained from (3.18)

and is given by

M P

D= T [P0 log - + (1 - Pi0) log ] (3.22)

i0 i0

Observe that the optimization of D does not, in general, lead to an

optimal D and vice versa. In other words, we can optimize either D1 or

D or a weighted sum of them, i.e., we can optimize either ASN 1 or ASN 0

or the weighted sum given by

ASN = y ASN 1 + (l-y) ASN 0  y (0,1] (3.23)

Next, we show that an optimal local quantizer is a likelihood ratio

quantizer. We focus our attention on the ith quantizer Q. whose

contribution to the denominator of (3.18) is given by
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p 1-Pil
D.. = log -P-i- +(1-p ) log io (3.24)iJ Pij pi0  (-il) i-Pi

When H1 is the true hypothesis, we can write (3.24) as follows

D p pil log - + (1-P ) log ii (3.25)
SPi 0  ii 1-pi0

We treat pi0 as a constant, and differentiate (3.25) with respect to pil

to obtain

dD i1  -{ iog 1 -l iii l i-Pi
dp i log Pi + l-log -Pil I 1 log -- + log i-p (3.26)

For pil > pi0 ' Pil and pi0 C (0,1), it is clear that pil/Pi0 > 1 and

(1-P io)/(l-Pi I > 1. Therefore, we conclude that

dfl Pi-Pi0dp log > 0 , for pil and pi0 e (0,1) (3.27)
dPil Pi0(I-p,.)

Similarly, when H0 is the true hypothesis, we can write (3.24) as follows

D = p log -- + (l-Pi ) log (2.28)io io - + i l -Pi0

Differentiating (3.28) with respect to pi, we obtain

d~i0

dD Pi-P (- 1) Pi - Pil (329)
dpi -Pi0 Pii Pi0 -i0) p-Pi0 -Pi0 Pil (1-pil

dDi0
Equation (3.29) shows clearly that - is negative for Pi > Pi and

dp ii ii io

nontrivial quantizer, i.e., pil and pi 0 C (0,I). The numerator of the
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riaht hand side in (3.18) is determined by the values of error proba-

bilitiE cc and 0. For small values of a and 0, it is clear that when

H (H0" is true, the numerator of (3.18) is positive (negative). There-

fore, differentiating (3.18) with respect to pil and observing that the

numerator which is denoted by N(cL,3) is not a function of p,j we obtain

d(ASN.) dDi
dA = -N(2,5) . !i < 0, for j=0,1 (3.30)

dp, D.. dp
ij 1 dil

From (3.30), we conclude that for any fixed p i and nontrivial quantizet

(P > pi0 and pil pi0 e (0,1)), ASN. is a monotonically decreasingJ

function of pil" Consequently, the optimum quantizer is the one which

maximizes pil corresponding to a fixed pi0" This quantizer is obviously

the one that employs a Neyman-Pearson criterion (likelihood ratio

quantizer) with a probability of false alarm equal to pi0 (0 < Pi0 < 1).

3.4. Performance Enhancement by Means of Multi-level Quantization

The quantizers considered so far were binary valued. Since the

quantizer does not discriminate between the observations in any single

region of its two regions, the quantization leads to a performance

degradation as reflected by an increase of both ASN 1 and ASN However,

this performance loss can be reduced by further partitioning of the obser-

vation space, i.e., by allowing more quantization levels. In this section, we

show that ASN., j=0,1, is a monotonically decreasing function of theJ

number of quantization levels when the quantization is based on the like-

lihood ratio function.

To prove our claim, it suffices to show that given any region R of the

observation space, where R is specified in terms of the two thresholds t1
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and t (t < t2) such that for any point x F' F, we have LR(t ) < LR(x) <

LR(t 2 ) as shown in Fig. 3.3. Then as a result of partitioning R into

two regions, the denominator in the expression of ASN. in equation (3.11)
3

increases when H is true (j=l) and decreases when H0 is true (j=O). Let

p , j=0,1, be the probability of an observation falling in R when H. is
I

true with 0 < prj < 1. Since the local quantizers were designed inde-

pendently as shown in the previous section, it follows that the region

R can be specified at any of the local observation spaces. Therefore,

in what follows we simply drop the index i of the local quantizers for

convenience. Let the region R be partitioned into two mutually exclusive

subregions R and R2 such that

1 2
Prl = Prl + Prl

(3.31)

1 2
PrO = prO + PrO

where p is the probability of an observation falling in the subregion
i

R , i = 1,2, when H., j=0,1, is the true hypothesis. We assume without

loss of generality that the likelihood ratio at any point in R2 is higher

or at least equal to its maximum in RI . Therefore, it follow, that

2 1Prl Prl Prl
- > - 1 (3.32)

p2 PrO 1

ro rO

Upon writing the expression of ASN. as in (3.18) after deleting the
I

quantizer index i and looking at the contribution of the region R to the

denominator, we observe that

D. = C + p log Pr- (3.33)
j rj PrO

where F is the contribution of all the regions in the observation space

other than R. Similarly, the contribution of the subregions R
1 and R2
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LR(x)

ti t-, x

Fig. 3.3: A region R of the observation space such that
LR(t 1) < LR(x) < LR(t,))
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can be incorporated in D. to obtain
J

1 2
D. = F + p lg + log r (3.34)

3 rj j1 Prj log

ro PrO

our objective is to show that ASN., j=0,1, is a monotonically decreasingJ

function of the number of quantization levels. Therefore, comparing

(3.33) with (3.34), we conclude that in order to prove the claimed mono-

tonicity it suffices to show that

1 2
1 Prl 2 Prl Prl

Pr log-j + Pr log - > log - (3.35)
rO r0 PrO

and

1 2
1 log Prl , 2 log Pr, log Pri (3.36)
ro g- P1 ro p 2 rO Pr

rO rO

To prove the inequality (3.35) which corresponds to the hypothesis H1

2 2
being true, we assume that Prl = C 1prl and p 0 = C op 0 ' where c1 > c as

a consequence of (3.32). The left hand side of (3,35) can easily be

writtei, as
(1-c ) Pr ll

L.H.S. = (1-c1 ) Pr1 log (1-co )p r0 + 1 1 l (3.37)
o l (-C0) rO 1l c p ro

Simplifying (3.37), we obtain

[ p 1  1-c Prl c]

L.H.S. = (1-cI) P log .- r- + log i---] + -- log-L
1rO 0 Pr0 o

Prlr+ r (1-c 1) log C c ] (3.38)Srlg PrO r1l C 1 log
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The first term on the R.H.S. of (3.38) is equal to the R.H.S. of (3.35).

Therefore, the proof of (3.35) is complete once the second term on the

R.H.S. of (3.38) i,. shown to be positive. We observe that prl > 0, and

use the inequality log x < x-1, x # 1, to obtain

1-c1  1-c 1-c

(o-c )log 1- (1-c )log > - (1-Cl) -i = - (cl-c o ) (3.39)
10- - 1 1 10

and
c1  c c

log- log 0 > - 010 - 1) = c -c (3.40)
1 lo 0 1 1 1 o 1 1 0

Combining (3.39) and (3.40), we obtain

1-c1 c 1

(1-c l )log + c I log C- > 0 (3,41)

0 0

and, therefore, ASN 1 decreases monotonically by increasing the number of

quantization levels. Similarly, when H0 is the true hypothesis, the

inequality (3.36) can be simplified yielding

L.H.S. = pr0 log + (l-C ) log - 4 0 log (3.42)
PO rO r 0-Co 0

The first term on the R.H.S. of (3.42) is equal to the R.H.S. of (3.36)
1-c 1  c 1

while the terms (1-c ) log 1-c and c log - can be simplified as
o 1-c o c

o 0

follows

(1-c) log T-cl < (I-c) [ 1 =- (C-C o ) (3.43a)
o 0

c log-c < c - 1= C-C (3.43b)
0 0

From (3.43), it follows that
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r (1-c ) log - + C log < 0 (3.44)
0 0

and, therefore, ASN 0 decreases monotonically by increasing the number of

quantization levels and the proof is complete.

3.5. The Effect of Transmission Errors

In Section 3.3, we have considered the quantization of each of the

local observatior3 into two levels, namely 1 and 0. There it was

assumed that the quantized local observations are communicated without

errors to the global decision maker where a centralized SPRT is per-

formed. However, the assumption of error free transmission is not

realistic, especially at high transmission rates. Therefore, we devote

this section to a study of the effect of transmission errors on the error

probabilities a and P. For the sake of clarity, we consider the case of

two identical local detectors and the following observation model

H0 : Y B(P0 ) i = 1,2; k 10 ik 0(3.45)

H : Yik B(Pl) P= 1-P 0 > 0.5

where B(o) is as defined in (3.15). The choice p1 = 1-p0 is intended for

facilitating the formulation of the SPRT at the central detector as a

random walk of equal steps [28,29]. The communication channel is assumed

to be a binary symmetric channel in which the error rate is pe as shown

in Fig.. 3.4.

The quantized observations encounter errors as they pass through the

noisy channel. At the central detector, the observation model in (3.45)

is still valid but with different values of parameters, namely P0 and Pl

34



1-Pe

Pe Pe

o/o 0

Fig. 3.4: A binary symmetric channel with error rate Pe"
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are replaced by pc and plc respectively. When H., j=0,1, is the true
J

hypothesis, we can solve for pjc as follows

Pjc = p(l-P e) + (1-p) Pe = p(l1-2p e) + Pe (3.46)

Suppose that H1 is the true hypothesis, we obtain from (3.46) that p1 c

Pl(l-Pe) + pPe. Similarly, when H0 is true, we obtain p0c=P0(l-Pe ) + plPe'

We note that

-P 0 c =-P0 + P0 pe - Plpe = P1 (-Pe) + Pe Plc (3.47)

From (3.47), we observe that the observation model at the central

detector is symmetric and is given by

H (0 1ik = B(P c) i = 1,2, k 1

(3.48)

H1 : ik = B(p1C) Plc l-P c > 0.5

where oik is the kth observation of the ith local detector as seen at

the front end of the global processor.

The central processor observes the incoming quantized observations

and performs the SPRT. Let p. be the probability of a local observation

arriving as 1 at the central detector when H. is the true hypothesis.

Therefore, the observation model of the central detector is as follows:

11 , with prob. p.
J

H. :ck = 10 or 01, with prob. 2 (- , k _> 1 (3.49)

00, with prob. (1-p 2
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where yck is the kth observation of the central detector. From (3.49),

it follows that the logarithm of the likelihood ratio function is a dis-

crete random variable Zck whose probability distribution function under

the hypothesis H. is given by]

2 log 0 (p/P), with prob. p. P.

H. Z = 0 , with prob. 2p.(1-p.) = S. j=0,1; k 1 (3.50)
j ck I J 3- a

-2 log (pl/P 0) , with (-pj = Q

In (3.50), the positive step (2 log (pl/P 0)) is equal to the magnitude of

the negative step (-2 log (p0/Pl)). Therefore, the central SPRT can be

easily formulated as a random walk on a finite number of states (Markov

chain) as shown in Fig. 3.5. The states labeled 0 and N are absorbing

states with decisions in favor of H0 and H1 respectively. As long as the

process is in one of the transient states labeled 1,2,...,N-1, the

central test must be continued until for the first time the process

reaches one of the absorbing states. For the Markov chain in Fig. 3.5,

it is well known [29] that if the process starts in the transient state

number Z, then the probability of absorption in the state 0 is given by

(Q./P.)

u. = (3.51)
1 - (Q./p )N

J J

and the average sample number ASN. is given by
J

Z
1S. r[  N(Q./P.) ]

ASN P Q (N-Z) - 1 i P (3.52)
1- (Q3/P)N
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Decide H.1,

Decide H,

Q QI Qj

Fig. 3.5: A Markov chain of (N 1) states.
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From (3.52), it follows that for a given a and P, we must have Z and N

chosen such that u0 > 1-a and u1 < 3. To this end let us distinguish

between the following two cases:

Case 1: In this case, the channel is assumed to be error free while in

fact it is not so, i.e., the design is based on the parameters p0=f0 and

pl=Pl in (3.45) while the actual values of the parameters are P0(1-2pe) +

Pe and 1 (l-2p e) + p respectively. Therefore, the result will be higher

error probabilities than specified. This fact can be shown by observing

that

Plc P( 1-2pe) + Pe P + Pe ]/[i+ Pe

Plc - P(1-2pe 
)  + Pe +l (-2pe)P0 (1-2pe) l (3.53)

S p p
Since < , it follows that = e / e P l and,0 1(-2pe) P0 (-2pe) Pl PO

therefore, we have

c P (3.54)

Plc Pl

On the other hand, for sufficiently large N and Z, which is the case

when the a and 0 are small, we can approximate the denominator in (3.51)

by 1. Consequently, we can write

(Q1)Z= (O) Z = c 2Z (3.55)

1 1 lc

Similarly, it can be easily shown that

A 50c 2(N-Z) (3.56)
a = l-u0 a ( )3Plc

where a and P. are the actual error probabilities at t e central levelc c

when the channel is not error free as assumed. Equations (3.55) and

(3.56) show clearly that a > a and 0c > P and hence the errors over
c c
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the channel will lead to an increase in the error probabilities. Simi-

larly, it can be shown that ASN. as given by (3.52) is dominated byJ

p.- Q. - l-2pe) < , which will lead to an increase in3 3 10 e 10

ASN..I

Case 2: In this case, the channel is assumed to be completely known,

therefore, the central detector has a completely apecified observation

model under both hypotheses as given by (3.49) or (3.50) with p. Pjc

The exact knowledge of the observation model at the front end of the

central processor enables us to redesign the central detector taking the

transmission errors into account. Consider Fig. 3.5 once again and, let

Z and N be the initial and final states instead of Z and N respec-c c

tively. Therefore, we can write

2(N -Zc c

a = /P 1C c'Ac(3.57)
2N a

and 1 - Oc /Pc c

2Zc
(P0c/Plc) 

A
I - ~0'~ 2 N = a (3.58)

-(p OC/P lc )c

where the inequalities (3.57) and (3.58) are obtained by restricting the

actual error probabilities a and Pa as shown on the right hand side of

(3.57) and (3.58) to be less than or equal to their specified values a

and P respectively. The fact that p0c/Plc > 0/P implies that Zc,

N -Z , and N are larger than their corresponding values in Case 1. Thec c c

average sample number obviously increases with increasing Z and N and,

therefore, ASN., j=0,1, tends to increase when the channel is noisy.
4
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3.6. Numerical Results

The numerical results presented in this section are obtained assuming

two identical local detectors as described in Section 3.5. The observa-

tion model is as described by (3.42) with p1=0.54 and P0 = 1-P1 = 0.46 and

the communication channel is as depicted in Fig. 3.4. The process of per-

forming the central SPRT is formulated as a random walk as described in

Section 3.5. The error probabilities are adjusted by suitable variation

of the initial state Z or the number of states N+l or both. In Table 3.1,

we present some values of Z and N along with the resulting error

probabilities and average sample numbers, for the case of one and two

local sensc_3.

Table 3.1. The error probabilities and ASN's for an error free

channel when one and two local sensors are used.

ONE SENSOR TWO SENSORS

a Z N ASN 1  ASN 0  Z N ASN 1  ASN 0

-3 -3
8.15x10 8.15xi0 30 60 368.9 368.9 15 30 184.45 184.45

-3 -3
4.29xi0 4.29X10 34 68 421.3 421.3 17 34 210.68 210.68

-3 -3
1.64x10 1.64X10 40 80 498.4 498.4 20 40 249.18 249.18

2.68xi0 -6  2.68X10 -6  80 160 1000 1000 40 80 500 500

-8 -6
1.15xI0 1.03XI0 86 200 1425 1075 43 100 712.5 537.5

-10 -7
8.86XI10 1.09x10 100 230 1625 1250 50 115 812.5 625

5.4x10-7  4.4X10-9  120 210 1125 1500 60 105 562.5 750

-7 -10
7.45x10 8.86x10 130 218 1100 1625 65 109 550 812.5
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The numerical results presented in Table 3.1 are obtained under the

assumption that p e= 0. However, the effect of channel errors on the per-

formance of the central detector is demonstrated in Table 3.2 for the two

cases described in Section 3.5. When p = 0, the choice Z = N/2 =43
-6

yields X = P = 1.03X10 and ASN 1 = ASN 0 = 537.5. As pe varies while Z

and N are fixed, the error probabilities a and 0 as well as the average

sample numbers ASN and ASN 0 varies as shown under Case 1. On the other

hand, when pe varies while Z and N are adjusted accordingly as described

in Case 2 of Section 3.5, the error probabilities are maintained while

ASN 1 and ASN 0 are higher than their values in Case 1.

Table 3.2. The effect of transmission errors on the

performance of the central SPRT.

CASE I CASE 2

Pe c=c ASNI=ASN 0  Z=N/2 a =Pa ASNI=ASN 0

0 1.03xl0 -6  537.5 43 1.03x10 -6  537.5

0,02 1.79xi0 - 6  559.9 45 0.065x10-6  585.9

0.04 3.11xlO - 6  584.2 47 0.955x10- 6  638.6

0.06 5.4XI0 6  610.8 49 0.994XI0 6  696.0

-6 -
0.08 9.39x10 639.9 52 0.833x10 6  773.8

-5 -
0.1 1.63x10 671.9 54 0.973x10 6  843.7

0,12 2.84x10 -5  707.2 57 0.938x10- 6  937.5

0.15 6.49x10 5  767.8 62 0.917x10 6  1107.1
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3.7. Discussion

In this chapter, we studied a centralized SPRT based on multisensor

data, and showed that the average sample numbers are monotonically

decreasing functions of the number of local sensors. We also studied the

issue of quantization of the local observations and showed that an optimal

quantizer is obtained by using a set of independent local likelihood ratio

quantizers, when the local observations are independent both spatially and

temporally. Furthermore, we showed that by increasing the number of

quantization levels, the average sample numbers decrease monotonically,

The formulation of the central SPRT as a random walk on a finite state

machine of fixed structure (Markov chain) is considered for the case of

two identical local sensors. The numerical results in Table 3.1 show

clearly that when both Z and N are even, the average sample numbers are

exactly half of their counterparts in the case of single local sensor.

When the transmission errors are ignored, the result is shown to be an

increase of the error probabilities and average sample numbers over their

specified values as demonstrated in Case 1 of Table 3.2. In addition, we

showed that when the transmission errors are known, they can be incorpo-

rated in the design of the central SPRT to maintain the specified error

probabilities. In this case, the only effect of transmission errors is to

increase the average sample numbers as shown in Case 2 of Table 3.2.

43



CHAPTER FOUR

A SIMPLE MULTI-SENSOR SEQUENTIAL

DETECTION PROCEDURE

4.1. Introduction

In this chapter, a simple multi-sensor decentralized sequential test

is proposed and analyzed. In Section 4.2, we describe the proposed multi-

sensor sequential test and show that it satisfies the prespecified error

probabilities a and P. The ASN of the proposed test is shown to be a

monotonically decreasing function of the number of sensors used. More-

over, we show that the increase in the error probabilities as a result of

truncation of the multi-sensor sequential test at any stage nT is less

than its counterpart in the single sensor case, i.e. a single sensor

sequential test also truncated at stage nT. In Section 4.3, we employ the

memoryless grouped data sequential detection (MLGDS) test procedure (21]

at the local sensors in the multi-sensor decentralized scheme. The ASN is

shown to be a monotonically decreasing function of the number of sensors

used. This result shows the feasibility of using our testing scheme

based on multiple sensors that employ the MLGDS test procedure at the

local sensors to outperform Wald's SPRT based on a single detector. In

other words, the decision time of the multi-sensor system using MLGDS

local detectors decreases when more sensors are added. At some point, the

performance loss due to the grouping of samples and memoryless nature of

the MLGDS test is overcome and from then on the performance in terms of

average decision time is better than Wald's SPRT. Our scheme compensates

for the performance loss due to the grouping of samples and the memoryless
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nature of the MLGDS procedure by adding more detectors. In Section 4.4,

we propose and analyze a truncation scheme for the case when the sensors

employ the MLGDS test procedure. Numerical results are presented in

Section 4.5 for illustration. Finally, the results of this chapter are

discussed in Section 4.6.

4.2. The Proposed Multi-Sensor Sequential Test

Consider the problem of testing a simple hypothesis H0 versus a simple

alternative H . The multi-sensor observation system is as shown in Fig.

4.1 which consists of M local detectors and a supervisor (global)

detector. Let f(x., 0) denote the pdf of the random variable xi, i =

',2,...,M, representing the observation at the ith local detector.

Let H0 be the hypothesis that 0 = O0, and H1 the hypothesis that 0 - 01.

Therefore, the pdf of x. is given by f(xi, 0.) when H. is true, j=0,1.

The successive observations on x. are denoted by x.ilX ... , xin (n e 1)

and they are assumed to be iid. The observations are assumed to be

independent from one local detector to the other, i.e., x. is independentim

of xik (m * k), and x m(Z * i). The local sequential detectors SD., i =

1,2,..., M, are designed to satisfy the prespecified values of the system

error probabilities a and P. Each local detector performs an SPRT based

on its own sequence of observations and transmits its decision to the

supervisor detector as soon as a decision on one of the two hypotheses is

reached. Nothing is transmitted if the decision at the local detector is

to continue taking observations. The supervisor detector accepts the

first incoming local decision and declares it to be the global decision.

Also, it informs all the local detectors to terminate their tests when the

global decision is reached. It should be mentioned that when two or more
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Xl X12 ""-- Seq. Det. #1

SDI

x2 Ix2 2 , Seq. Det. #2 Global

SD2  Decision Uf

Maker

XMI'XM2.... Seq. Det. #M

SDM

Fig. 4.1: Block diagram of the simple multi-sensor sequential
detection scheme..
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local decisions are available to the supervisor detector at the same time,

only one of them will be accepted by the supervisor detector and this

choice is arbitrary.

Next we show that the overall system satisfies the required error

probabilities a and P. Let 7i denote the probability that the global

decision is based on the decision of the ith local detector when H. isJ

the true hypothesis. Then, we have

M
) Yi.. = j = , (4. L)

Let e.. denote the probability of error at the ith local detector when H.
iJ I

is the true hypothesis. Expressing the global error probabilities a andg

fg in terms of e.'s and i's, we obtain
g 13 1)

M
a 9 ei 0 YiO (4.2)

and
M

Og eil yil (4.3)

However, the design of the local detectors to satisfy a and implies

that e.0 = a and eil = P for i = 1,2,...,M. Therefore, it follows from

(4.2), (4.3) and (4.1) that a = a and Pg = as required.

The SPRT at SD. is based on its local observations and is performed1

in a manner identical to Wald (1], i.e., at stage n (n z 1), the likeli-

hood ratio function A. is computed:in

nf(xik, 01

A.n kn f(x ik, 0 ) (4.4)
k=l ik 0
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This likelihood ratio is compared with two thresholds as follows

{ t iu, stop and decide H
A.n tit, stop and decide H0  (4.5)

otherwise, continue.

where t. u and t i are the test thresholds of SDi, which can be approxi-

mated [i] by

i - e.l_
t . e _ 1

u e io

and (4.6)

1 -eii -a

Note that the number of samples necessary for the termination of the

sequential test at SD. is a discrete random variable T. . We denote by1 1

f Ti(n) and F Ti (n) the pdf and the cumulative distribution function (cdf)

of the test duration T,, where1

fT. (n) = Pr{T i = n}

n 1 (4.7)

FT. (n) = Pr{T i  n}

The global test length is also a discrete random variable denoted by Tg

and its pdf and cdf are denoted by f Tg(n) and Tg(n) respectively.

Now we show that the global ASN decreases monotonically with the

increase in the number of local detectors. We observe that for the M

detector system in Fig. 4.1 the event that the global test terminates

after the nth stage is the same as the event that none of the (SD.) 's has

terminated at stage n or before. Therefore, we can write
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Pr{Tg > n} = Pr[T 1 > n, T2 > n,..., TM > n} , n 1 (4.8)

Using the independence of local detectors, we may write

Pr{T > ni = [2 -F T (n)] = [1 - F T(n)] X (1 - F T(n)] X.. .X ( - F T(n)]
gg12

(4.9)

Since (1 - F (n)] < 1 (n finite), i = 1,2,...,M, it follows fromT.

(4.9) that Pr{T > n} decreases as the number of local detectors

increases. The global ASN is given by

00

ASN = 7 Pr{T > n} (4.10)

Since for each value of n, Pr{T > n} decreases with increasing M, itg

follows from (4.10) and (4.9) that ASN decreases monotonically with M.

Also,

C0

ASN. =-- Pr{T i > n} i - 1,2,...,M (4.11)
n ----0

Since Pr{T > n} < Pr{T. > n} for M > 1, the ASN is strictly less than
g

any ASN., i = 1,2,...,M. It should be emphasized that the above

analysis is valid under both hypotheses.

From equation (4.9), it can be observed that the probability of

termination of the test after the nth stage is small since it is the product

of the corresponding probabilities of the local tests. However, it is

well known [1] that for the SPRT there does not exist any definite upper

bound for the number n of samples to be observed before reaching a

decision. Large values of n are possible with a nonzero probability.

Therefore, it is necessary from an implementation point of view to set a

49



definite upper bound nT on n. This can be achieved by truncating the

sequential procedure at n=nT, i.e., by specifying a new decision rule for

the acceptance or rejection of H0 at the nTth stage if the sequential test

did not terminate prior to stage nT.

Next we show that the increase in error probabilities due to

truncation of the global test at stage nT is a decreasing function of

M. Let T(n T) and 03 (n T) be the global error probabilities at the

truncation stage nT. Recall that all local detectors are identical,

therefore, if we consider only one of the local sequential detectors, say

SD., i = 1,2,...,M, we can write

a(n ) = Pr{Ai > V/H and t- < A. < t. for all 1 n < nT} (4.12)
T T inT 0 iz in iu -T

where v is the threshold at the truncation stage. Similarly, we can

write

OT(nT) = Pr[A.n < V/H and t < A.n < t. u for all I n 5 nT} (4.13)

sTT

Let Ccs(nT and P inT) be the error probabilities satisfied by the sequen-

tial portion of the test. The optimality of Wald's SPRT [1) implies that

no other sequential procedure can satisfy the same error probabilities

with a smaller ASN. However for the truncated test the ASN is obviously

smaller. Therefore, at least one of the error probabilities must be

higher than required. In our analysis, we assume T (nT) > O s(n T) and

T (n T) > P (n T) following the convention in the literature (1,31]. For

the truncated test, the overall error probabilities Co(M) and Po(M) for

the M detector case are given by:

o(M) = a,(nT) Pr{Tg 5 nT/H0} + T (nT) Pr{Tg > nT/H0} (4.14)
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00(M) = PS(nT) Pr{Tg nT/HI} + P T T) Pr{Tg > nT/HI} (4.15)

and for the single detector case, say for the ith detector, we have

a (1) = a (n T ) Pr{T i i n T /H0 + aT(n T) Pr{T i > n T/H0} (4.16)o sT O TT i T

PO (1) = P3 (n T) Pr{T i 5 n T/H } + P (n T) Pr{T i > n T/Hl} (4.17)

Simplifying (4.14) and (4.16), we obtain

a (M) = X (n T) - [aT(n T) - a (n T)] Pr{T n T/H} 1(4.18)o oT TT sT g T

and

a (1) = a T(n T) - [a T(n T ) - C (nT )) Pr{T n T/H } (4.19)o TTT sT g T

respectively. Taking the difference a (1) - a (M), we arrive ato o

a (1) - a (M) = (a T(nT) -a (nT)] X (Pr[T nT/H0} - Pr{T i : nT/H0]o o TT sT g T

As shown before, the second term on the right hand side of (4.20) in-

creases with increasing M. Therefore, a (M) is a decreasing function of0

M. In the same manner, we can show that PO (M) is also a monotonically

decreasing function of M.

In the next section, we focus our attention on the analysis of the

multi-sensor decentralized scheme when the local detectors use the MLGDS

procedure of Lee and Thomas (21]. In this case, simple expressions can

be obtained for the test length probability distribution at both the

local and global levels. Also the expression for a s(n T), Ps (n T),

aT(n T), and PT (n T) are simpler to find unlike the case considered above

where each local detector performs Wald's SPRT.

4.3. The Multi-Sensor Decentralized Scheme using the MLGDS Procedure

Consider the problem of testing a simple hypothesis H0 versus a

simple location alternative H1 . The observation model is as defined in
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Section 4.2 except for the fact that f(xi, 8.) is replaced by f(x.-8.).

In other words, the observation model is given by

H 0 :x. - f(x - 0)

F i 1 (4.21)

H x. - f(x- 0).

where 0 > 0 and x. ~ f(x-8.) means that the ith observation x. of any1 0 i J

local detector has a pdf f(x-0.) when H.,,j = 0,1, is the true hypothesis.

The pdf f(.) is assumed to be continuous and symmetric, i.e., f(x)=f(-x).

The multi-sensor decentralized scheme using identical MLGDS detectors can

be described as follows. At the nth stage (n 1), and at each local

sensor, using the current group of N samples, a sufficient test statistic0

TN (x N) is formed, where
o o

=N x ,x..,x] (4.22)
OS =I (n-l)N +1i (n-2)N +1I nN 0(.2

Since the successive observations are assumed to be iid, it follows that

the successive test statistics are iid. Once the test statistic is

formed, the following test is performed at each local detector

> A , stop and decide H1
B , stop and decide HTN (xN) 10(.3N (x otherwise, discard all previous stages

0 0 and proceed to the next stage.

where A and B are the test thresholds with A > B. The values of A,B, and

N are predetermined such that the prespecified values of a and P are0

satisfied and the global ASN of the test is minimized.

Let p0 = Pr{TN (x N A/H 0 }, q 0 = Pr{TN (xN) B/H 0}, and r0 =

0 0 0 0
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1 - (p0+q0). Similarly let p1 = Pr{TN ( N A/H 1},q = PrfTN (EN) : B/HI}'
O 0 0 0

and rI = 1 - (p1+q1 ). Since the local detectors as well as their observa-

tions are identical at all stages, it follows that the global decision

will be based on any one of the local decisions with equal probability,

i.e.,

Y'j = y2j Mj j 0,1 (4.24)

Since the local sequential test can terminate at any stage, the error

probabilities can be expressed as

r= P + r0P + 2 + _ (4.25)
r0P0 1 r0

and

= q + rlq1 + r2q + _ (4.26)

Equations (4.25) and (4.26) give the necessary conditions imposed on A

and B for a particular choice of the package size N to satisfy c and 3.0

We observe that the event of test termination is independent from stage

to stage, and from one detector to another. Therefore, the global test

length is geometrically distributed random variable. When H. is true, its
3

pdf is given

f (t /H.) = (1 - r) (rM) n - * 8(t -nN ) , n 1 (4.27)
T g j j g ogj3

M
where 8(.) is the Kronecker delta function and (r.) is the probabilityJ

that all of the local tests fail to decide on a hypothesis and must con-

tinue at any single stage. From (4.27), we can express the ASN under the

hypothesis H. to be

5
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N0

ASN. = E[T /Hj =l (4.28)
3 g rM

As was pointed out in [21j, we must select the package size N and the0

test thresholds A, and B before the test can be executed. The thresholds

A and B must obviously satisfy (4.25) and (4.26), and, in general, mini-

mize a weighted sum of ASN 1 and ASN 0 as given by

ASN = 1 ASN 0 + (1-1) ASN 1  , E F (0,11 (4.29)

An analytical solution of this optimization problem does not appear to be

feasible and, therefore, a numerical solution is necessary. In the

following we propose an algorithm for the determination of the optimal

package size N and the test thresholds.0

Step 1: Pick a package of size N = no e[i, N FSS (where NFS S is the

number of observations such that r. = 0), and choose A(n ) with
3 0

00 F T00
P0(n°) f fT (x /H ) d T < (X (4.30)

A(n ) 0and 0

00

P(n) fT (x n /H ) d T < i- (4.31)
1F T n 1 n

A(n ) 0
0

Step 2: For P 0(n ) in (4.30) there exists a single threshold B 0(n ) such

that X is satisfied. Let
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B 0 (n O)

q (n fT (x /H0 ) d T
nT 0 0

-00 0

it follows that a is given by

PO (no
ax 0= (4.32)

P 0(n ) + q 0 (n (

Similarly, let q1(n) j 0 d T

-00 0

and obtain B (n ) such that 3 as given by

=q(0  1 0 (4.33)
ql(n 0 + P (n 0

is satisfied.

Step 3: We have one of the following three cases:

a) B 0(n ) < B (n ). This case represents the situation where A(n 000 10 0

is higher than the optimal A(n ), because any value of B(n ),

B 0(no) < B (n0) < Bl(no), will yield smaller values of a and

than specified. Therefore, choose a smaller value of A(n ) and0

repeat.

b) B 0(n ) > B (n ). In this case, there is no value of B(n ) that00 10 o0

will satisfy the required a and P. Therefore, choose a higher

value of A(n ) and repeat.
0

C) B0 (n ) = B (n ). This case represents the solution which we areQo 1 o

seeking. Therefore, let A(no)=A(n) and B1 (n) B(no)-B 0 (n)

Step 4: Once the thresholds for the selected n are determined, we0

repeat the process to determine the thresholds for (n -1). Com-
0
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pute the corresponding ASN given by (4.29). If the ASN for n
0

is less than the ASN for (n -1), we increase n . ' therwise, weo 0

choose a smaller value of n
0

Step 5: The algorithm must be continued until for the first time at n*,

the process of increasing or decreasing n is reversed. The0

optimal package size is obviously N* = n*.
0 0

The above algorithm is based on the fact that r. is monotonicallyJ

decreasing function of the package size N . This fact has been proven0

for equal error probabilities and normally distributed observations in

[21). To prove the above fact in the general case, we proceed as follows.

Let N and (1 - r.(N )) be any package size and the corresponding
0 Jo

probability of decision on one of the hypotheses when H. is true. LetJ

(N +AN ) and [1-r. (N +AN )] be another package size and the corresponding

probability of a decision on one of the hypotheses. If we view the

increment AN as an independent package and apply the MLGDS procedure to0

the individual packages of size N and AN , we may write0 0

r.(N + AN ) = r.(N ) • r.(AN ) (4.34)
3 0 Jo 0

since r.(AN ) is strictly less than one for AN 1 1, it follows that
3 0 0

r.(N + AN 0 < r.(N ) and, therefore, the proof is complete.J o 0 J o

Returning to the multi-sensor decentralized scheme, we observe from

(4.28) that ASN. is a monotonically increasing function of the number ofJ

local detectors M. In the remainder of this section, we consider the

truncation of the sequential test at the nTth stage. A package of

observations of the same size N is taken at one of the local detectors
0

and the following single threshold test is performed.
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T N (xN v, decide H, (435)
TN -N) (45

o o < V ,decide H

0

where v is the test threshold at the (n T+l)th stage. Let aT(N ) andT To

OT (N ) be the error probabilities at the truncation stage with

aT (NO) = Pr{TN (-N ) V/H 0 }
o o

(4.36)

PT (N0 ) = Pr[TN -SN < V/H 1}
o 0

The overall global error probabilities a (M) and Po(M) are as given in

(4.14) and (4.15) respectively. Upon writing (4.14) and (4.15)

explicitly and observing that as(nT) = a and s(nT) = P, we obtain

MnT

a (M) = a + (a - a)(r ) T (4.37)
o T 0

and
n

1o(M) = 1 + (13 - P)(r T (4.38)
o T 1

Since ri < 1, j = 0,1, it follows from (4.37) and (4.38) that the increase

in error probabilities {a (M) - a) and {o(M) - P} is a monotonically

decreasing function of M, the number of sensors, as well as the truncation

stage nT. Consequently, the M detector system is less sensitive to

truncation.

4.4. The Proposed Truncation Scheme

We have shown that the probability of the global test length Ta

exceeding a specified truncation stage nT is less for the multi-sensor

scheme than for the single detector case. However, T is still a randomg

variable which can assume excessively large values. To avoid this
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problem which will limit the practical use of sequential procedures, trun-

cation is necessary. The truncation problem is not simple to analyze

r31-33] except for the MLGDS procedure in [21].

The proposed truncation scheme for the system under consideration is

as follows: choose A* and B* (the test thresholds) such that

a* - * < a (4.39)

and

1 r < 9 (4.40)

where P*, r*, q*, and r* are as defined earlier when the thresholds A*,

and B* are used instead of A, and B respectively. The local and global

sequential tests are performed as usual. if no decision is reached up to

the n Tth stage, only one local detector is allowed to take one more pack-

age of observations of the same size and test against a single threshold

V as described in (4.35). Writing the expressions for the overall error

probabilities, we obtain

n

a (M) = a* + (a (No ) - a)(r* M ) T (4.41)
0 To0 0

and

10(M) = P" + (PT(N) - P*)(r*M) T (4.42)

where T(N ) and 1T (N ) are as defined by (4.36). Since a* < a and 1" < 1
n

and the term (r ) Tis a decreasing function of nT; there exists a value3T

of nT at which a (M) S a and 9o(M) S 1. The smallest value of nT at

which both ao(M) and Po(M) become smaller than a and P will be used for

truncation. It should be emphasized that for different values of a* and
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j*, the solution for nT is different. However, the determination of a*

and P* for some value of the package size is not simple because of the

continuous nature of a* and j*. In other words, all values a* C(0,a) and

P* e(0,P) are possible. On the other hand, since the ASN of the

untruncated test is less than that of the truncated test for the same a

and 3, we can say that a reasonable choice of ci* and P* is that which

leads to a small increase in the ASN's over their untruncated counterparts

while maintaining the constraints on a and J. The average sample number

of the truncated test is given by

1 rM nT+l

ASNT = N (4.43)
j 0 M

when the hypothesis H. is true, j=0,1.J

4.5. Numerical Results

In this section, we present some numerical results for the multi-

sensor decentralized scheme using MLGDS procedure. The observation model

is given by

H 0: x N(0, a'

H1 : x. ~ N(O, 02)

where N(8, 02) is the normal density function with mean 0, and variance

02. We assume that 8 = 0.2 and y2 = 1. It is well known that for a = 0,

the number of observations necessary for the optimal FSS linear detector

(Neyman-Pearson) is the solution of the equation

NFSS = [0 -(1 - a)]
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where (D(.) is the cdf of the normal density function of zero mean and unit

variance. The ASN of Wald's SPRT is approximated by the following

equation (1]

(1-0) log 1-0 + 0 log
ASN (X a-

W 02 /2a2

In Table 4.1, the optimal package size N* is determined numerically
M

for the case of M local detectors, M = 1,2,3. This optimal value depends

on the specified error probabilities a and 1 as well as the number of

local detectors. The values of NFSS , ASN, ASN(M), and N* are given for

some values of a and 0. Note that for smaller values of a and P, it

takes more sensors to compensate for the loss due to grouping of data.

Table 4.1: Optimal package sizes N* and their corresponding ASN(M)
M

a-=0 N ASN N* ASN(i) N* ASN(2) N* ASN(3)
FSS W 1 2 3

10- 2  541 225.2 208 312.0 163 219.1 143 181.8

10- 3  954 344.6 359 492.1 289 359.9 246 305.9

-4
10 1383 460.4 511 664.2 406 499.4 364 431.1

10- 5  1818 575.6 659 830.7 534 638.9 485 557.2

10- 6  2259 690.8 808 993.5 663 776.3 600 683.4

The increase in error probabilities as a result of truncation is

demonstrated by the numerical results in Table 42. The package size is

set at N* (given in Table 4.1) irrespective of the number of local
1

detectors. The central test is truncated at the third stage. The
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resulting error probabilities a and Pot and the ASN of the truncated

test (ASN T ) are given for some values of a and 0.

Table 4.2: Overall error probabilities a and Po and the ASN for

the truncated test

ONE DETECTOR TWO DETECTORS THREE DETECTORS

= ao=Po ASNT a=o ASNT a=o ASNT

10-2 1.24x10 - 2  308.1 1.009x10- 2  234 1.003x10- 2  216

10- 3  1.55X10 - 3  489.5 1.011xl0- 3  387.3 1.0002x10 - 3  366.2

10- 4  2.45x10- 4  662.3 1.018x10- 4  539.7 1.0002x10 - 4  527.3

10- 5  5.52x10"4  829.2 1.04X10 - 5  688.4 1.0004X10 - 5  664.9

10-6 15.56X10 - 6  992.3 1.095x10- 6  837.2 1.0006x10 - 6  813.3

The truncation scheme proposed in Section 4.4 is applied to the

distributed system of two and three local detectors. The package sizes

are the optrnal for the untruncated test as given in Table 3.1. However,

the sequential portion of the test is designed to satisf" as and 0s (as <

a, P < P) and the truncation stage M is obtained by requiring the overall

error probabilities 0 and P3 to be less than or equal to a and 0 respec-0 0

Ttively. In Table 4.3, we present values of M, ASN, ASN , a o, 1 s 'C. and

13 as obtained for different values of a and P.
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Table 4.3: Overall error probabilities and ASN's of the proposed trun-

cation scheme.

TWO SENSORS THREE SENSORS

= M ASN ASNT s=Ps (o=0o M ASN ASNT zs=os ao-0

10- 2  5 219.1 220.2 9,79X10
3  9.9X10 3  5 181.8 182.8 9.81X10 2  9,86x10 3

10- 3 5 359.9 361.5 9.74x10
- 4 9 88xi0 4 5 305.9 307.2 9.72x10 - 4 9.72x10- 5

10- 4 6 499.4 501.5 9.65x105 9.76xi0 -5 5 431.1 432.6 9.65x105 9.94x10-3

10- 5 6 638.9 640.9 9.58X106 9.81X10 - 6 6 557.2 559.2 9.62x106 9.69x10 6

10- 6 7 776.3 779 9.56xi0 - 7 9.64x10 -  6 683.4 685.7 9.58x107 9.86x10- 7

4.6. Dise.ssion

In this chapter, we proposed a simple multi-sensor decentralized

sequential detection procedure and derived the expressions for the ASN's.

The case when each local detector employs the MLGDS procedure of Lee and

Thomas (21] is considered in detail and a truncation scheme is analyzed.

We showed that the performance of the multi-sensor scheme is a mono-

tonically increasing function of the number of local sensors used. The

increase in error probabilities due to truncation of the sequential

procedure at any stage is shown to be a decreasing function of the number

of local detectors. The numerical results presented show clearly the

improved performance and support the analysis. In the simple multi-sensor

scheme, each local detector was designed independently to satisfy the

specified error probabilities, i.e., no coupling between local thresholds
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was allowed. It is expected that if coupling between local thresholds is

allowed and local decisions are all taken into account in the process of

arriving at the global decision, the resulting system performance will be

further improved. In the next two chapters, we will study distributed

sequential detection systems in which the local thresholds are coupled and

all local decisions are fused at the global decision maker to arrive at

the global decision.
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CHAPTER FIVE

A DECENTRALIZED SEQUENTIAL TEST

WITH DATA FUSION

5.1. Introduction

In Chapter Four, we studied a simple multi-sensor sequential detec-

tion procedure and showed that its performance improves monotonically

with the increase in the number of sensors used. The sequential test in

Chapter Four is carried out locally and only local decisions are conmuni-

cated to the global decision maker. The local thresholds are not coupled

because no explicit data fusion rule is employed. All the thresholds are

designed to satisfy the global error probabilities a and P.

In this chapter, we allow the local thresholds to be coupled. Each

local detector perfozms a SE T based on its own observations, and

communicates its decision to the global decision maker (fusion center)

whenever it decides on a hypothesis. Nothing is communiczted if the local

decision is to continue. The global decision maker combines the incoming

local decisions according to a predetermined fusion rule to come up with

the global (final) decision. In Section 5.2, we describe the sequential

detection system, and define the observation model. The global error

probabilities are functions of the local error probabilities and the

fusion rule. An analysis for different possible fusion rules is presented

in Section 5.3, with emphasis on the relationship between the local and

global error probabilities. Moreover, the expected global test length

is derived in terms of the local error probabilities and the pdf's of the

local test length. The case of three local detectors is considered
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briefly in Section 5.4. An example is presented in Section 5.5 to

illustrate the design of the local tests for prespecified values of a and

P, and for different fusion rules. In Section 5.6, we discuss the re-

sults obtained in this chapter.

5.2. A Description of the Distributed System

Consider the problem of testing a simple hypothesis H0 versus a simple

alternative H1 . The system consists of two sequential detectors and a

global decision maker as shown in Fig. 5.1. Let f(x,e ) and f(y, 0 )x y

denote the pdf's of the random variables x and y, which represent the

observations of the first and second sequential detectors respectively.

Let H0 be the hypothesis that 8x = 00, 0y = 80, and H the hypothesis

that 8x = 8xl and 8y = 8 yl. Thus, the pdf's of x and y are given by f(x,

0 .) and f(y, 8 .) when H. is true, i=0,1. The successive observations on
x1 yl I

x are denoted by x1,x2,..., x = x (n 1) and they are assumed to ben --n

samples of iid random variables. Similarly, the successive observations

on y are denoted by ylY 2,..., Yn = n (n 2 1) and they are assumed to be

iid random variables. For any two positive integers n,m, the joint pdf of

x and v conditioned on the hypothesis H. is given by-n -m i

n m

i - IT f(x. , 8 'i) ff f(yj , ey ) i 0,2 (5.1)
ni x1 j.1

Based on its own observations, each local detector performs an SPRT. The

SPRT at the first detector is defined as follows: Two positive constants

A1 and B (A1 > B ) are chosen and at each stage n, n , 1, of testing, the

likelihood ratio function A is computed:
x--n
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XlX 2 , •.

•Local detector #1 u

Global

Decision Uf

Maker

YPY2 Local detector #2

Fig. 5.1: A distributed system consisting of two local
detectors and a global decision maker.
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n f (x., 0xlA ] (5.2)
x f (x 0 )
-n j=1 j, x

The likelihood ratio in (5.2) is compared with the constants tthresholds)

A1 and B as follows

( >Al, decide H1

Ax < Bi, decide H0  (5.3)

- otherwise, continue

A similar SPRT is implemented at the second detector with A2 and B2

as the thresholds. The choice of the thresholds Ak and Bk, k = 1,2,

depends on the values of the local error probabilities ak and Pk* It has

been shown [1] that the thresholds are approximated in terms of ck and 0k

as follows--

Ak (1 - / X

,k = 1,2 (5.4)

Bk Pk/(1 - ck)

A more convenient local test can be obtained by taking the logarithm

of both sides of (5.3). The resulting tests at the two detectors are

given by

n 1> log Ak , decide H1
Y kj _< log Bk r decide HO ,k = 1,2 (5.5)

where otherwise , continue.

V = log [f(xj, 0 xl)/f(xj, 0 )]

and
a

v2j= log [f(yj, 0 y)/f(y., 0 )]

As mentioned above, the local error probabilities Ck and Ok are

functions of the local thresholds Ak and B , k = 1,2. By adjusting the
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local thresholds we can vary the corresponding local error probabilities.

Since the observations are independent from one local detector to the

other, the local decisions are also independent. As in the distributed

fixed-sample-size systems using Neyman-Pearson criterion, we can not

obtain the global error probabilities without the knowledge of the fusion

rule. In other words, the global error probabilities are functions of the

local error probabilities and the fusion rule. Conversely, given the

global error probabilities a and 0, we can choose the fusion rule first,

and then solve for (k and Ok' k = 1,2, or equivalently Ak and Bk such that

a and P are satisfied and the global average sample number is minimum.
The global average sample number ASN is defined as the average number ofg

observations necessary for reaching a global decision. Clearly, an

optimal solution will require the choice of the fusion rule among all

pGssible fusion rules and solving for the local thresholds such that ASNg

is minimized. However, for a distributed system consisting of two local

detectors and binary local decisions (assuming that local detectors have

reached a hypothesis decision), we observe that the number of possible

binary fusion rules is

24=44 4 4

Si'(14-i)

For sequential hypothesis testing, the fusion rule can be ternary to

allow the occurrence of the event continue. In this case, the number of

possible fusion rules is obviously more than 24 and is given by
4 4! =34

-i!j!(4-i-j) 

3

For an optimal solution, all possible fusion rules must be enumerated and

the one yielding the lowest ASN must be chosen. In the followingg

section, we study only three different possible fusion rules and evaluate

their performance.
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5.3. Analysis of Some Possible Fusion Rules

The fusion rules of interest are those which take into account the de-

cisions of both local detectors, and satisfy the monotone property of the

likelihood ratio function at the global level. Therefore, we consider

only three fusion rules and analyze them.

i) AND Fusion Rule: According to this fusion rule, the global de-

cision is H (ug=H ) if and only if both local decisions are H (UI=H and

u 2=H1), i.e.,

Hl, if Ul=H 1 and u2=H,

Ug = f(ul u 2 )  H0, if uI = H0 or u2=H0  (5.6)

continue, elsewhere

From (5-6), it follows that the global error probabilities are given by

a= a 2  (5.7)

(lf)= (1-0 1-
1:lf2)

It is clear that depending on the first incoming local decision, the

global decision will be reached no later than the decision time of the

second incoming local decision. Since an SPRT terminates in a finite

number of steps (stages) with probability one (1], it follows that a

global decision will be reached in a finite number of steps with proba-

bility one.

From (5.7), we observe that Ck > C and 0k < 0, k = 1,2. Also, since

(Xk Pk < < 1 we can further approximate (5.4) to obtain

A 1- < 1 'S A
k k Cc (5.8)

B9k
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From (5.3), we observe that the use of AND fusion rule requires lower

local thresholds than the centralized test. This will lead to a shorter

local average decision time (ASN' .en H1 is true and a longer local

average decision time when H0 is the true hypothesis.

The two main functions usually used in evaluating the performance of

an SPRT are the power function and the ASN function. The power function

P Dg(8x, y )is defined as the probability of deciding H1 when the actual

parameters of the distributions are 8 and 8 instead of 8 and 8x y 8xl Y

respectively. From (5.7), it follows that P Dg(8x y ) is simply the

product of the local power functions P Dx(8 ) and P (8 ) at the first andDxx Dy y

second local sequential detectors respectively. Therefore, we can write

P Dg(x,8 = P (8 ) - P (0 ) (5.9)Dg x y Dx x PDyy

The computation of P Dg(8x y ) is thus achieved by computing P Dx( x ) and

P Dy( y) at the local detectors exactly as described in [1).

The second function of interest is the expected duration of the global

test denoted by E[T /H.) when H. is the true hypothesis. Let Tk denoteg i

i i i i
the test length of the kth,k=l,2 sequential detector. Let Al, BI, Cn, D

n n n nr

and Fn be the events that {T1 =n, T2>n/Hi}, {T >n, T2=n/Hi}, {T =n,

T2<n/Hi}, [Tl<n, T2-n/Hi}, and 1T2T 2=n/Hi} respectively. Observe that

if a gl:bal decision is reached at the nth stage, then one of the above

mutually exclusive events must have occurred. When the first incoming

decision is H0 the global test will terminate without the need to wait for

the othb- local detector to decide. This corresponds to the events Ai and
n

iB n. On the other hand, if the first incoming local decision is H1 , then

the global decision maker must wait for the other local detector to
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i i
decide. This corresponds to the events C and D . When both decisionsn n

arrive at the same time, the event Fi occurs. To compute the proba-
n

i i i i i
bilities of the events A , B n , C , D and F the exact probability

distribution functions of T1 and T2 when H.,i=0,1, is true are required.

The distribution function of the test length Tk is known (1,28,29] only

when the increments vki as defined in equation (5.5) are integral

multiples of a constant. In this case, the exact probability distribution

ii
function of T can be derived. Let a (n) and Pk(n) be the probabilities

g k

that the kth sequential det-ector terminates at the nth stage when H. is
1

true accepting H1 and H0 respectively, i.e.

i Au H/W
ak(n) Pr{Tk=n, uk= H1/H

k=l,2 and i=0,l

n > 1 (5.10)

ik (n) = PrtTk=n, uk=H0/Hi}

n n

Let &(n) = 7 a'(j) and ik(n) = P ik(j). From (5.6) and (5.10), it

follows that the probability of reaching a global decision at the nth

stage when H. is true is given by1

i 2i i ~ i. -i i.
Pr{Tg=n/Hi} = P1(n) - 0'(- n)] + P2(n) (1 - (n) -

g J1 nJ. 2 '2 2 1

+ (n) + a"(n)] &'(n-1) + a (n-1)[O(n) + '(n)]

+ [(a(n) + Pl(n)) (a(n) + P2(n)] (5.11)

Simplifying (5.11), we obtain
i ~i

Pr[Tg=n/Hi} = l(n)(1 - i2(n-i)1 + P2(n)[l-O3(n)]

+ a" &1(2n) + 2(n) &1(n-1) (5.12)
1 27
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To simplify the analysis, we restrict the local detectors to be

identical. In this case, T1 and T2 are identically distributed under

both hypotheses. Therefore, equation (5.12) can be simplified further to

obtain

Pr{Tg=n/Hi = Pi(n)(2-0i(n) - Oi(n-l)] + ai(n) (&i(n) - &i(n-1)] (5.13)

where i(n) (X (n),P i(n) = P3(n), C'(n) = i(n), and Oi(n)= 0k(n),

k=0,1. Equation (5.13) can be used to numerically compute the average

global test duration. However, it does not provide enough insight to the

problem. We observe that if H. is the true hypothesis, then the obtained

local decision will saLisfy the lccal error probabilities. Therefore, we

can write

Pr{Tg=n/Hi} = PrjuI=H /HI} Pr(A ) + Pr{u =H /HiI Pr(B )
g 0. l i n 2 0 i n

(5.14)

+ Prfu =H /H I} Pr(C n) + Prul=H /Hi }  Pr(D ) + Pr(F n)

2 11 n l i n n

From the definitions of the minimum and maximum of two random variables

(29], we observe that

Pr{min(TI,T ) = n/,i. = Pr(A ) + Pr(B ) + Pr(F
12 a. n n n

and

Pr{max(TI,T 2 ) - n/Hi} Pr(C ) + Pr(D ) + Pr(F )
12 a. n n n

Therefore, it follows from (5.14)-(5.16) that T is given byg

min(T1,T 2) with probability P min (H.)

T 15(. 17)g

max(Ti,T2) with probability P max(H.)

when H. is the true hypothesis, and where P min (H.) = Pr(u = H 0/H )
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Pr (u2  H H0/H i )  Pr(u = H0/H i ) and P max(H.) = Pr(u I = H /Hi) = Pr(u2

H1/H)i Pr(u£ = H1 /Hi). Equation (5.17) shows that the global test

duration is either the maximum or the minimum of the local test durations

depending on whether the first incoming decision is H1 or H0 respec-

tively. From (5.17), it follows that the expected global test duration

conditioned on the hypothesis H.,i=0,1, is as follows:1

E[T /H.] = Pr(uz=H0/H i ) . Efmin(TIT 2)/H i ] +

Pr(uX=H1 /Hi ) . Efmax(T1 ,T2)/Hi] (5.18)

Thus, the problem reduces to finding the expected values of the minimum

and the maximum of the local test lengths. Due to the functional

complexity of the distribution of T1 and T2 under both hypotheses, an

analytical solution does not seem feasible. However, the numerical compu-

tation is relatively simple and it can be performed via matrix multiplica-

tions [28,29].

ii) OR Fusion Rule: In this case, a global decision in favor of H1

is declared if any of the local decisions is H1 , while H0 is decided

globally if and only if both local decisions are H . i.e.,

(H , if ul=H 1 or u2 =H1

u = f(u1 u 2 = H0 , if u1 =H0 and u 2 =H0  (5.19)
continue, elsewhere

As in the case of AND fusion rule, the OR fusion rule will reach a global

decision no later than the time at which the second local decision

reaches the fusion center. Since the local decisions are reached in a

finite number of steps with probability one, it follows that a global
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decision will be reached after a finite number of steps with probability

one also. Therefore, we can express the global error probabilities in

terms of the local error probabilities using (5.19) as follows

(1-a) = (1-aI ) 0 (1-a2)

= P1 * P2 
(5.20)

From (5.20), it is clear that the global power function P Dg(8x y ) as de-

fined earlier can be expressed as the product of the local power func-

tions 2 Dx( ) and P Dy(8 )" In particular, we have

[I 2 PDglOx, y) = {i - PDx(0x) 0 i - PDy (9)} (5.21)

Therefore, the computation of the power functions is similar to the AND

fusion rule and it can be done as in (1] at the local level. Equation

(5.20) can be used to show that the OR fusion rule increases the local

thresholds. Thus, the average local test length increases when H1 is

true, and decreases when H0 is true.

The exact probability distribution function of the global test length

T can be derived provided that the exact distributions of the localg

tests are known. In a manner similar to the AND fusion rule, we can show

that

i i
Pr{Tg=n/Hi} = a(n) [1 - Cc (n-1)) + a(n) [l-d(n)]

i 2

+ P1(n) 0'(n) + i (n)3(n-l) (5.22)

If we assume identical local detectors and use the fact that local

decisions must satisfy the local error probabilities, we can easily show

that the global test duration is given by (5.17). However, for the OR

fusion rule P min (H.) =Pr(uI = HI/H) = Pr(u 2 = HI/H i) Pr(u E HI/H i) and
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Pmax (H i Pr(u1 = H 0/H.) Pr(u2 = H0/H i)  Pr(uZ = H0 /Hi). Hence, the

average global test duration is given by

E(Tg/H.JI = Pr(u =H0/Ki). E(max(T,T 2 ) / H l 
] +

Pr(u 1 =H /H i ) E(min(T,T 2)/H i (5.23)

which is similar to (5.18) except for the fact that H0 is replaced by H1

and vice versa.

iii) Three-Way Fusion Rule: According to this fusion rule, a

global decision in favor of H. is declared if and only if both local

decisions are H., i=0,1. If the local decisions are not the same, the

global decision maker can either use a randomized decision rule to stop

the test, or it can repeat the local sequential tests without keeping the

previous test results. We first consider the randomization option, and

in this case the three-way fusion rule is given by

HI, with probability 1 if Ul=U2=H 1

HI, with probability y if u I * u2

U = f(ulfu 2  Hot with probability (1-y) if u1 # u2  (5.24)

H0, with probability 1 if Ul=U2=H0

continue, elsewhere.

Once again, because the global decision according to (5.24) is reached no

later than the time at which the second incoming local decision is

obtained, it follows that global decision will be obtained with proba-

bility one in a finite number of steps. The global error probabilities

are expressed in terms of the local error probabilities as follows:
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a= a1 a2 + a1(1-a2 ) + y(i-a 1 )a 2  (5.25)

0= PlP2 + (l-y) (l-r 1)132 + (1-Y)031 (-0 2 )

Simplifying (5.25), we obtain

a = (l-2y)aIa2 + y(a 1+a2)

(5.26)

= (2y-) 1 02 ' (1-y)(i +P2 )

Therefore, for al=a2 and y = 0.5, we observe that each local detector

must satisfy the global error probabilities. Because the global test can

not terminate before both local decisions are obtained, it follows that

the global average test duration is higher than that of a single

sequential detector. In other words, the fusion rule in (5.24) will de-

grade the performance instead of improving it, so we don't consider it

any further. Turning our attention to the second option, we can formu-

late the fusion rule as follows

H if Ul=H1 and u2=H l

~ - l 11 21
u = f(ulu 2 H0 if uI-H0 and u2-H0 (5.27)

continue, elsewhere.

Let a trial be defined as the process of starting the local sequential

tests until the two local decisions are reached. Note that if the two

local decisions disagree, more than one trial will be required. The

successive trials have identically distributed random lengths under the

hypothesis H., i=0,1, as a consequence of the observations being1

identical. Each trial is guaranteed to terminate in a finite number of

steps w-th probability one. However, the probability is one that a

series of repeated trials will terminate within a finite number of trials,
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it follows that the sequential process will terminate in a finite number

of steps with probability one.

The global error probabilities can be obtained by summing their

values at all trials. To this end, let pi be the probability of a suc-

cessful trial and qi = 1-Pi the probability of an unsuccessful trial when

H. is true. We obtain

Po =  (-2 +  (1-a1)(1-a2) (5.28)

P, = P1P2 + (1-031)(1-32)

The probability of error of the first kind a is therefore given by

a2

a= a 2 2 + a aq2 + a + 1 2 (5.29)

Similarly, the probability of error of the second kind P is given by

+ Pq 102 (5.30)
2+ 132q + 131 32q. +... - .30~P 1

The global power function P Dg(0x y ) can be derived in the same way used

in deriving (5.29) and (5.30). Recalling the definition of P Dg(0x, 0y

and utilizing the assumed independence of local observations, we can

express P Dg(0,O ) in terms of P (0 ) and P (0 ) as followsDgxy Dx x Dy y

P2x(0 ) P(0)

P (0,0) = Dxx Dy y (5.31)Dg x y 2 (0 x ) P Dy(0 y) + (- P Dx(0 )] [1 - P Dy(0) "(

where the denominator of (5.31) is simply the probability of a successful

trial when 0 and 0 are the true values of the local parameters. Fromx y

(5.31), it is evident that the computation of P Dg(0x y ) is equivalent to
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the computation of both PDX ( x ) and PDy (0 y) as described in detail by

Wald in [I).

The expected duration of the global test when H. is true is the next

function to be derived. Let the random variable representing the number

of observations in the mth trial when H. is the true hypothesis bei

denoted by Dim, i=0,1; m 1. Recall that the random variables D. m(m l)

are iid with an expected duration E[D.J given by

E(D.i] = E[max(T,T 2)/H 1 (5.32)

where (5.32) is derived by observing that for a trial to reach an end,

both local decisions must be reached. The conditional expected global

test duration can be written as follows:

E[T /Hi,m) = m E[D i  (5.33)

However, E[T /H.,m] occurs with probability qi P. The expected
gi 3

global test duration can be obtained by taking the expected value of

(5.33), and the result is

(0 E[D.]

E[T g/H.] = 1m E[D. qin-) (5.34)

For sufficiently small error probabilities, we observe from (5.28),

(5.29), and (5.30) that for ai= 2-(X and l=P2=P,, we have P, 2 1,

CL > a, and P. > P. Hence, unlike the two previous fusion rules, the

effect of this fusion rule is to decrease the upper thresholds and to

increase the lower thresholds which in turn decreases the average local

test length under both hypotheses to a value smaller than that of a

single sequential detector.
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5.4. The Three Local Detectors Case

In this section, we consider extending the distributed system in

Fig. 5.1 to include three local sequential detectors as shown in

Fig. 5.2. The successive observations at the third sequential detector

are denoted by w, 102 ,...,wn = D (ntl) and they are assumed to be iid

random variables. We denote by f(o, 0 ) the pdf of the random variable

o) representing the observations at the third local detector and assume

that 0 is independent of both x and y. Each local detector carries out

an SPRT based on its own observations as described in Section 5.2. As is

evident from the results of distributed FSS systems [11] and the dis-

cussion at the end of Section 5.2, the number of fusion rules increases

quite rapidly as the number of local detectors increase. In our work, we

will confine our analysis to a generalization of the three-way fusion

rule which is symmetric with respect to the hypotheses. Therefore, a

global decision in favor of the hypothesis H. will be declared if and
1

only if the three local detectors have reached their decisions and they

are all favoring Hi,i=0,1. The fusion rule can therefore be formulated

as follows:

i { 1 if Ul=u2=U 3=H1

U = f(ul,u 2 ,  = Oif uI=U2=U3=H0 (5.35)

continue, elsewhere

As in the case of two local detectors, we define a trial as the

process of starting the local sequential tests until the three local

decisions are reached. If the local decisions disagree, we begin another

trial ignoring the results of previous trials. Let (X. and_ 3 be the

error probabilities at the jth local detector,J=l,2,3. Let pi be the
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1 ,x 2,••

Local detector #1 Ul

Yl,2, " Iu 2) Global

Yl'Y2'
Local detector #2 Decision Uf

W,W2 ... Local detector #3

Fig. 5.2: A distributed system consisting of three local
detectors and a global decision maker.
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probability of achieving a successful trial and qi = 1-Pi when H.i is

true, to obtain
33

P0= 1 Cc + j (1 - C.)j-1 J j:l

(5.36)
3 3

p1  1 T$ . + 1T (1 -
j=l j=l

The global error probabilities can be derived following the same approach

used to derive (5.29) and (5.30), the results are given by the following

equation
3

a (1 a.) / Po
9=l

(5.37)
3

3 = 1 1 3j) / P19=1

The global power function P Dg(xy,8 0) is a function of the local power

functions (Dg( 0 x ) , PDy(0y) and PDW(8(0) as given by

SPDx(0 ) P (8) D(O ) (P (8,8 ~ Dx Dy y D. i
Dg(0x' yW ) = PDx( x )PDy y DO)PDO) ( 0) - PDx(ox m1 - PDy(o y [-2D(O( 0)

(5.38)

If we assume identical observations at all local detectors and equal

local performance, i.e., a j=C and P=3zj=l,2,3. It follows that the

local test lengths Tj,j=I,2,3, are identically distribuced under the

hypothesis H., i=0,1. Moreover, we can zpproximate
i

-E a3 or a£ 3 43X (5.39)

ZP' or P

which can be used to show that E(T./H., j=1,2,3; i=0,1, is approxi-
J i
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mately equal to one-third of the corresponding value in the centralized

(one detector) case.

The average global test duration E[T g/H.]i when H. is the true hypo-

thesis can be derived in almost the same way used for the case of the

local detectors. However, the derivation is more complicated due to the

fact that our trials are of two different types each requiring, on the

average, different number of observations. In particular, if the first

two incoming local decisions are different, then a trial can be

terminated requiring on the average T observations. On the other hand,

if the first two incoming local decisions are the same, then a trial must

continue until the third local decision is obtained. Let T3i denote the

average number of observations in the trial in which the first and second

incoming local decisions are identical. Let 2i aid y3i denote the proba-

bility that when H. is true, our trial is unsuccessful and requires T2i

and T3i average number of observations respectively. Based on that, we

can write

T 3i, with prob. l-y 2 i-y3i
E[T g/H.]i I 2i + E[Tg/Hi] , with prob. Y2i i=O,1 (5.40)

T3i + E[T /H.j , with prob. y3i

Simplifying (5.40), we obtain

73i y2i
E(T /H.] = T3i l + ]i+ T2i 1] (5.41)g .i- T- 3i 2ii - -2i

TO simplify the numerical computation, we can derive an upper bound on

E[T /H.]. The upper bound is arrived -'- ty equating T2i to T and observ-g i2i 3

ing that T >3  T2 where equality holds if and only if the last two
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incoming local decisions are obtained at the same time. By recognizing

T3i to be the expected value of the maximum of the three local test

lengths, we arrive at the following inequality

E[max(TI,T2,T3)/H i

E[T /H.] m 2 3 i (5.42)
g I Pi

The inequality (5.42) is tight for sufficiently small local error proba-

bilities; in this case both 73i and y2i are extremely small and the aver-

age global test length is dictated by the probability of a successful

trial pi z 1.

5.5. Numerical Examole

We consider the case of two identical local detectors. The observa-

tions are assumed to be iid both spatially and temporally. Let the

observation model be as follows:

H0: X. Yl B(P0

1 0 P1 = I-P 0  0.5

HI: X. Y~ B(P

wnere B(P.) is a Bernoulli random variable with parameter P.. Therefore,

the local test can be formulated as a random walk on the states numbered

0,1,2,...,N. The states 0 and N are absorbing states with local

decisions H0 and H1 respectively while the remainder of the states are

transient states. Starting the process at the kth state, it is known

(29] that
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k
- ((-p)/p)N

Pr(uZ = Ho/H) =Pr~u~i - ((1-P2)/2.)N
01 1

and

Pr(uZ H /H i ) 1 - Pr(u Z H 0 /Hi)

In the example we choose P = 1-P = 0.6667. The values of k and N are

chosen to yield the desired values of the local error probabilities Cc

and P.. Let R = (00 ... 1 ... 0] be a row vector of size N+1 whose

elements are all zero except at the kth position. Let C = (10 .. 0011 be

a column vector with elements that are all zero except for 1 at the 0th

and the Nth positions. Let P. be the transition probability matrix [29)

when H. is true, i=0,1. As was pointed out in [29), the probability
1

that the jth local test will terminate before or at the nth stage is given

by

n
Pr{T. n/H.} = R P.C ; i=0,1; 4=1,2

Using the concept of tail probabilities (29), the expected value of T.

when H. is true can be derived as follows1

00

E(T./H.] = T Pr{T. > n/H.}

n=O

Therefore, we can write
00

E(T./H3 1 - R

n=0

which gives the ASN of the jth local test when H. is the true hypothesis1

To derive the ASN's of the min(Ti,T 2 ) and the max(Ti,T2 ), we observe that

T1 and T 2 are iid, and hence
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Pr~min(T ,T ) > n/Hi} = {I - R PnC}2
1 2 "

Pr{max(TI,T2 ) < n/Hi = (R PnC]2

From those two equations and using once again the tail probabilities, we

obtain

E(min(TI,T )/H { - R pC}

n=0

00

E(max(TI,T 2 )/H i  = 7 {I - (R pnc]2}

n=0
The numerical results obtained for a single detector, the simple multi-

sensor scheme in Chapter Four, and the various fusion rules are given

below for some values of a and P.

Single Detector The Simple AND OR Three-Way

a = 5 = 3.891 x 10-3 Scheme

E[T /H ] 23.81 16.89 16.44 18.56 15.98(67%)

E(T /H0 1 23.81 16.89 18.56 16.44 15.98(67%)

a = 2.43x10-, 13 = 3.905x10
3

E[T /H 1 35.76 26.97 23.75 27.85 24.18(67.6%)

E[T /H0  24 16.94 19.32 16.59 16.25(67.7%)

a = 0 = 1.526 x 10-5

E[T /H 1 48 37.5 31.05 40.04 31(64.5%)

E(T g/H0  48 37.5 40.04 31.05 31(64.5%)

a - 5.96x10 - 8 , 1.526xi0-
5

E[T /H ] 71.71 58.95 44.9 61.28 44.9(62.4%)

E(T g/H0  48 37.53 40.17 31.00 31.03(64.6%)

= 1 = 2.33 x I 0

E(T g/H 96 80.79 58.45 83.54 58.45(61%)

E(T g/H0  96 80.79 83.54 58.45 58.45(6:%)
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5.6. Discussion

A distributed system consisting of two local sequential detectors and

a global decision maker was considered. The global error probabilities

are shown to be functions of the local error probabilities as well as of

the fusion rule used. The global power function was shown to be a simple

function of the local power functions for a given fusion rule. For two

identical local detectors, the average global test length was derived in

terms of the local test lengths. The case of three local detectors was

considered briefly and an upper bound was derived for the average global

test length. The numerical results obtained show that the AND fusion

rule performs better than the OR fusion rule when H1 is true, and vice

versa when H0 is true. On the other hand, the Three-Way fusion rule com-

bines the advantages of both fusion rules and performs quite well under

both hypotheses, with better performance for smaller error probabilities.

Moreover, the Three-Way fusion rule has better performance than the

simple sequential scheme presented in Chapter Four where no explicit

fusion rule was employed.
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CHAPTER SIX

A MODIFIED DISTRIBUTED SEQUENTIAL

HYPOTHESIS TESTING PROCEDURE

WITH DATA FUSION

6.1. Introduction

In binary signal detection theory, sequential hypothesis testing pro-

cedures [1,2] provide a significant advantage over fixed-sample-size (FSS)

test procedures. For the same error probabilities a and 0, the sequential

procedures, on the average require substantially less number of observa-

tions. However, the sequential procedures are usually not easy to imple-

ment and require a random number of observations before they terminate.

In other words, the sequential procedures do not give any definite upper

bound on the number of observations required for decision. Such a

situation will limit the practical use of sequential procedures and

necessitate truncation. The truncation problem [31-33] is not easy to

analyze except for the simple procedure given in [21].

The SPRT was generalized in [25,26] for the detection of M hypotheses

with different means of the normal distributicn. As was pointed out in

(25], the generalized SPRT is not easy to implement, and its performance

is difficult to evaluate. Furthermore, it should be mentioned that the

sequential test in (25) is not guaranteed to be optimal. In (27],

Fleisher et al. generalized the memoryless grouped-data sequential (MLGDS)

test procedure of Lee and Thomas [21] to the case of multiple hypotheses

with different means/variances of the normal distribution. The sequential

testinc procedure in (2'] exhibits a performance superiority over the
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optimal FSS test while maintaining a much simpler structure and analysis

than the sequential test in (25].

In Chapters Four and Five, we have studied some decentralized sequen-

tial hypothesis testing schemes. The numerical results obtained show that

the scheme in Chapter Five has a better performance than that in Chapter

Four. However, the derivation of the average global test length is quite

laborious and no simple truncation scheme is available. Motivated by

this, we consider another decentralized sequential testing procedure.

The distribute. sequential testing procedure is a generalization of the

MLGDS procedure in (21] to a distributed environment as described and

analyzed in Section 6.2, for the binary hypothesis case. In Section 6.3,

we consider the case of M hypotheses. Section 6.4 contains a

description and analysis of the truncation scheme applied to the binary

hypothesis case. Numerical results are presented in Section 6.5, and

finally this chapter is concluded in Section 6.6 where we discuss our

results.

6.2. The Modified Distributed Sequential Test for Binary

Hypothesis Testing

We consider a distributed system consisting of two local detectors

(LDs) and a global decision maker (GDM) as shown in Fig. 6.1. The LDs

are not allowed to communicate with each other. Binary hypothesis test-

ing problem is considered with equally probable hypotheses. At any

observation time, each LD takes a package of observations of size N , and0

makes a decision based on its own obseLvations. The local decision is

either in favor of one of the two underlying hypotheses, or an indecision

(ignorance) is declared. The two local decisions are communicated to the
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Local detector #1 U

Global

Decision uf

Y ,Y 2 . . . . 311 L o c al d e tecto r # 2 M a e -u 
2

Fig. 6.1: A distributed system consisting of two local

detectors and a global decision maker.
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GDM, which in turn combines them according to the specified fusion rule

to come up with the global decision. In this chapter, we are interested

in sequential testing procedures, Therefore, the global decision is

either one of the hypotheses or is to continue. When the global decision

is in favor of one of the hypotheses, the local as well as the global

tests are terminated. However, when the global decision is to continue,

the local MLGDS tests are repeated discarding the results of all previous

stages.

Let xiX 2 1 ... be a sequence of iid random variables which represent

the successive observations at local detector #1. Similarly, let

yY 2,... be a sequence of iid observations at local detector #2, The

observations are assumed to be spatially lid. The hypothesis H0 repre-

sents the absence of a signal while the alternative H1 represents the

presence of the signal. The observation model is given by

H : x. =e +n.1 1 1

yi = 0 + n. i 1 (6.1)

H0 : x. = n.i i

yi n.1

where 0 is the term representing the signal and n. is the additive noise
1

component. We assume that the noise is normally distributed with mean

zero and variance a2, i.e., n. ~ N(0,02 ) . The observations are taken at1

the LDs in groups of size N each. Therefore, the test statistics at

LD # 1 and LD # 2 are given by

nN
0

TN (-N = x. (6.2)
o o i= (n- TN +1 1

and 0
nN

0

TN (XN ) = Y. (6.3)

0 0 i=(n-T-N +1
0
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respectively. Based on the local sufficient test statistics TN (xN ) and
0 0

T (YN Y, the hypothesis testing problem is modeled by:
N N
0 0

H: T (xN  ) N(NOO , No0C 2)

o o
TN (YN) N(No0 , N oa 2 )

0 0o o

H0 : TN (x ) N(0 , N 0 2) (6.4)N No o

TN (YN) ~ N(0 ,N 0 2)
0 0o o

For equal global error probabilities a and 3 (where a is the probability

of deciding H1 when H0 is true, and 3 is the probability of deciding H0

when H1 is the true hypothesis), it follows from the symmetry of the

problem that the local thresholds are symmetric around the point N 0/2.0

Let A. and B., j=1,2, be the upper and lower thresholds at the jth LD

respectively. Therefore, we can write

A. = N 8/2 + C (N
1 0 J

j = 1 , 2 (6.5)

B. = N 0/2 - C.(N
1 0 3 o

where C.(N ) is a constant which depends on the package size N for3 0 o

specified error probabilities. Following the convention in the litera-

ture [7-13], we assume identical local detectors. Under the above assump-

tion, equation (6.5) can be rewritten as follows

A - AI A = N 06/2 + C(N )
12 o o

(6.6)

B = BI=B2 = N 0/2 - C(N )

o o
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Let p. = Pr[T (x) A/Hi} and q. = Pr[T (x ) B/Hi} for i=0,1.
a.N -n . N -nM

0 0
It follows that

P 0 = 4(B/'o ) (6.7)

0

P0 = ql = 1 - T A/4N 0)

where 4D(.) is the cdf of the unit normal random variable N(0,1). At any

stage of the test, LD #1 computes its own test statistic using only its

current group of observations and performs the following test:

A , uI = 1

TN (N) 5 B , uI = 0 (6.8)
0 0 otherwise , u I

where u1 denotes the decision of LD #1, and I represents indecision in

the three level quantizer. The procedure at LD #2 is identical to that

performed at LD #1. Therefore, the two local decisions are iid discrete

random variables. In particular, the jth local decision u., j=1,2, underJ

the hypothesis H., i = 0,1, is distributed as follows:

1 , with prob. p, j=1,2

u. : u, 0 , with prob. q i (6,9)

I , with prob. r.

where r. = 1 - (pi + qi). The GDM observes only the set of incoming

local decisions and combines them according to some fusion rule. The

fusion rule g(uI, u2) must satisfy the monotone property of the global

likelihood ratio (LR) function and admit three different courses of

action (decide H0, Hi, or continue). Motivated by the results of the

previous chapter, we propose to use the following symmetric fusion rule

which satisfies the above requirements
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U 1=u2=1 , stop and decide H

A Ul=U2=0 , stop and decide HOu =g u 2) 2 (6.10)
g (U' 2  otherwise, discard all previous

local decisions and continue.

where u denotes the global (final) decision.g

The probability of error of the first kind, a, can be computed by sum-

ming the probabilities of deciding H1 at all stages when H0 is the true

hypothesis. The successive stages are identically distributed each with

the probability of a hypothesis decision (deciding either H0 or HI )

equal to (p q 2 ) and a probability of continue equal to 1 - (p0+ q2)

Therefore, we can write

a - YPru=H1 at the kth stage/H is true}ePr{the kth stage is reachedl.
k __- l 0

Simplifying, we obtain

00p2 q2

a p2(1 - p 2 0 2 2 + 2 (6.11)k---lP0 0 P 0 PO0 q 0 PO0 q 0

Let Pr(e) be defined as the average probability of error, i.e.,

Pr(e) = a Pr{H 0 is truel + 0 Pr{H 1 is true}

Since a=p, it follows that Pr(e) = a = 0, and the probability of correct

decision is 1 - Pr(e) = [q2/(p2 + q2)]. Inspecting (6.11) closely, we

observe that in order to minimize a - Pr(e) and maximize PD = 1-0=l-Pr(e)

simultaneously, we must minimize their ratio, i.e., (p0/q 0 = (p0/P1 )
2

Similarly, we can minimize 1 and maximize (1-a) = 1-Pr(e) simultaneously

by minimizing the ratio (q /q0 2 However, the quantity (p0/P1 )
2 or

equivalently (p0/P1 ) is minimized in the region R1 of the local observa-

tion space such that the local LR is maximum. Similarly the quantity

(q 1 /q 0 ) 2 or equivalently (q1 /q0) is minimized in the region R0 of the
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local observation space where the local LR is minimum. Because the local

decisions are ternary by definition, it follows that RI is the remainder

of the observation space as shown in Fig. 6.2. Therefore, we conclude

that an optimal local test must necessarily be a likelihood ratio test

that partitions the observation space into three mutually exclusive

regions Rol Rif and R1 such that LR(R0) < LR(R I) < LR(R1 ). When the

observation falls in R., i = 0, I, 1, the corresponding local decision is

u = i; Z = 1,2. The independence assumption implies that the joint LR

function is the product of the local likelihood ratios LR1 and LR2 at LD

#1 and LD #2 respectively. Moreover, the global decision maker observes

only the set of incoming local decisions. Therefore, we conclude that

the optimal global test (fusion rule) is a LR test performed on the set

of local decisions as given by (6.10). At this stage, it should be

emphasized that because the observations are normal, the tests in (6.5)

and (6.6) are likelihood ratio tests, and hence, they are optimal.

Returning to equation (6.11), we observe that when H1 is the true

hypothesis, the probability that the global test will terminate at the

kth stage (k 1) is given by (1 - (p + q2)]kl (p2 + q2. Therefore,
2. 2. 1 1

the average sample number (ASN) is the same under both hypotheses and is

given by u q0 N
= ]k-1 2 _ o q2 N

ASN = N Tkl - (p+ q') (p 2 2 (6.12)
k-=l 0 0 0 0 (P 0 +q0)

It is clear from (6.11) that p2 < a, or equivalently p0 < 4 a for any
00

value of a. Moreover, (6.11) can be written as follows:

P0 = 4a/(1-a) q0 = 4(X/ (1-a) p1  (6.13)

94



Ro(uj--O)  Ri(uj=I )  Rl(Uj=l)

No0 -C ",i00

LR(Ro)< LR(R) <LR(R 1)

Fig. 6.2 : Partitioning of the jth local observation space

to minimize error probabilities.
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For any value of p0' the package size N is [21) given by

N ) ) + e-i (Nz/(1-X) p (6.14)
0 8 0

or equivalently

No= )2 (01 el (/l-a)p 0 ) - ) P))2 (6.15)

where - (.) is the inverse of 0(.). Substituting for N from (6.15) in0

(6.12), we obtain

No a- i (qal (1-(Xp) - (p0 )J)2 P2 (6.16)
0 8 '0

The package size N is a monotonically increasing function of p0 and there-0

fore, for each value of N there exists a unique value of p0 that will0

satisfy the error probabilities. To show thautL, ae differentiate (6.15)

with respect to p0 to obtain

dN 1 __1dN (2 Iw- ela/ (1-a) po- 0-l(po0 )
dp 0  '0'

(6.17)

1 1

(el N (1-a)/a p0 )] - (p0 )

where 4 is the unit normal density function. The term (01 4(1-L)/ P0 -

0 (p0)] is positive because (1-a)ia p 0 > P0 for values of a of interest

(M < 0.5). Rewriting (6.17), we obtain

dN __ _ -1f i
dp 0  0 '''~ 0~I1a VN ( 0 )

[4-i (p 0 ))]i

{4a/(l-a) - (6.18)
*0 [-1(1-a) /a p0 )
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The first term on the right hand side of (6.18) is positive because the

numerator and denominator are bDth positive. The term f[(-l(p 0)]/

0(,6- (1-a)/a p0)] is recognized as the inverse of the LR function at

the upper threshold A. The LR function is strictly monotonically increas-

ing function of its argument. Therefore, it follows that

PiA Pr{TN -N ) 2 A/H1 } C--l((1-a)/a p 0)]

P0 - Pr{TN N A/H0 } >  -i (6.19)
o o -( N (p0 H

From (6.13), we have pl /p0 4(1-c)/a , and thus

_ [-1 (p0 ) ]
4a/ (1-) - 1 > 0 (6.20)

dN
We conclude from (6.20) and (6.18) that -- is strictly positive for all

dP0

P0 < a. Consequently N is a monotonically increasing function of p0. The

ASN as given in (6.16) is also a function of p0 which can be written

simply as follows
(XN

ASN - 0 (6.21)

It is clear that an optimal choice of the package size N or equivalently

p0 will minimize the ASN. Let N* and p* be the optimal package size and
0 ~0 0

its corresponding value of p0. Differentiating (6.21) with respect to p0

and setting the result equal to zero, we obtain

dN 2N
= 0 (6.22)

dp0  p0

Solving (6.22), we obtain the optimal package size N*. However, an
0

analytical solution for N* does not appear to be feasible, and one needs
0

to consider numerical search. In (21], it was shown numerically, that for
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-18 -2
10 1 < 10 , the choice N 0 N FSS/3 is nearly optimal, where NFS s is

the number of observations required by the optimal FSS detector to satisfy

the same error rates. In our case, since twc local detectors are being

used, we can restrict the numerical search to the set of integers NFSS/6

N <_ N FSS/3. The upper limit N FSS/3 represents the case when the

decentralized system is equivalent to one detector (no gain in

performance), while the lower limit N FSS/6 represents the case when the

decentralized system is equivalent to the centralized case (transmission

of the analog observations).

6.3. The Modified Sequential Test for M-ary Hypothesis Testing

Once again we consider the distributed system shown in Fig. 6.1. The

observations are as defined in the previous section except that there are

M equally probable hypotheses. In particular, the observation model is

as follows:
x. = kO + n.

I I
Hk : i 1 ; k = 0,1,...,M-1 (6.23)

Yi = kO + n.

where kO is the constant signal component under the hypothesis Hk and n.k

is as defined earlier. The local test procedures are identical, there-

fore, we describe only the test procedure at LD #1. At any stage of the

test, a package of N observations is taken and a sufficient statistic0

TN (x N)is computed. Let the pdf of the test statistic TN (2N ) be
0 0 0 0

denoted by f(t/H k ) when Hk is the true hypothesis. The local te3t is

obtained by generalizing the test for the binary hypotheses case as given

by (6.8). it is known [34] that for the general case, where the

M(M-1)
hypotheses are not ordered, we require a set of 2 pairwise likelihood

ratio tests. However, the hypotheses in (6.23) are ordered and, there-
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fore, we need to test between adjacent hypotheses only. The resulting

test can be summarized as follows: accept the hypothesis Hk if both of

the following two likelihood ratio tests,

f(t/Hk+l) ( T u = T , accept Hk+ 1

ki f(t/Hk) 5 T E , accept Hk

(6.24)
A f(t/H) r - , accept Hk

A - ku -1

f(t/Hk -1) :5 = r , accept Hk-l

lead to the acceptance of H The choice of the thresholds in (6.24) is

intended to maintain the symmetry of the local test, i.e., the local test

weighs all the hypotheses equally. Let ak and rk be the probabilities of

deciding Hk+l and Hk-i respectively, when Hk is the true hypothesis.

It is clear from (6.23) and (6.24) that ak and 3k are the same for all

values of k and that a k = Ok is maintained. For sufficiently small

values of the average error probability, we can neglect the errors that

can occur between nonadjacent hypotheses. In this case, it can be shown

that the test in (6.24) is optimal and indeed minimizes the local average

probability of error. Observe that the thresholds in (6.24) are dif-

ferent from those in [27). The test in [27J uses thresholds that are

identical to those of the sequential test in [25,26) and, therefore, they

are not necessarily optimal. Simplifying equation (6.24), we arrive at

the following equivalent tests

T N-N T N (2k+l)o
A 0 > 2 + (N) accept

TN (x N  T = t. N0 (21+1)0
0 0 =1 < 2 -(N) , accept Hk

(6.25)

NN Nx (2-)oo + - (No) , accept Hk 1
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From (6.25), it is clear that the local test is simply to determine the

region of the observation space in which T (xN  ) falls and decide
0 0

H k(U = k) if TN (xN ) E R . The regions Rk; k=0,l,...,M-!, are as
0 0

summarized below:

Rk = [N kO - c , N kO + cJ ; k-l,2, ... ,M-1

R 0  = (-, c) (6.26)

RM_ 1 = (M-l) N 8 - c , c)

I, = (kN 8 + c , (k+l)N 8 - c) ; k = 1,2,...,M-2,kl o o

where c = N 8/2 - E(N ) is a real number whose value depends on N and

satisfies c _< N 8/2. We define the indecision region I to be the union0

of all indecision regions Ik, k+l; k = 0,1,...,M-2. Let e(j,Z) be the

probability that TN (x ) C R. when H is the true hypothesis, i.e.
0 0

e(j,Z) = Pr{u I = j/H } jx = 0'l,,..,M-l (6.27)

For small error probabilities, it follows that

e(j,j) >> e(j,j-l) = e(j-l,j) >> e(j,j-2) - e(j-2,j) >> ... (6.28)

which states that if an error occurs, it is most likely to occur between

adjacent hypotheses. A straightforward generalization of the fusion rule

given by (6.10) leads to the following symmetric fusion rule

I Ul=U2=k , stop and decide Hk
g 2 otherwise, discard all previous

stages and continue.
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From (6.29), it follows that the probability of error when Hk is true is

given by

M-1 M-1
Pr(e/Hk) = T e2 (j,k)/ T e2 (j,k) k = 0,1,...,M-1 (6.30)

j~k
M-1

where T e2 (j,k) is the probability of obtaining two idetical local
3----0

decisions at any stage. Neglecting all errors between nonadjacent

hypotheses, we can approximate Pr(e/H k ) for a middle hypothesis by

Pr(e/H k) k 2e2 (k-l,k)/{e2 (k,k) + 2e2 (k-l,k)}, k=l,2,...,M-2 (6.31)

and for the end hypotheses H0 and HM I , we can write

Pr(e/H 0 Pr(e/H M_) e2 (1,0)/fe 2 (0,0) + e2 (i,0)} (6.32)

Equations (6.31) and (6.32), show that the error probability for a middle

hypothesis is approximately twice that of a boundary hypothesis which is

in agreement with the results of centralized detection under the same

criterion (27].

The test procedure described adove is clearly memoryless because the

local decisLons are ignored if a hypothesis decision is rnot reached. De-

noting by P T(k) the probability of global test termination at any stage

provided that it has not terminated at any prior stage and Hk is the true

hypothesis. It follows that
M-1

PT (k) =T e2 (j,k)

j=0

which can be approximated as follows:
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e (k,k) + 2e2 (k-1,k) , k-l,2, ...,M-2

PT(k) Z e2 (0,0) + e2 (1,0) , k-0 (6.33)

e2 (M-l,M-I) + e2 (M-2,M-1) , k=M-I

From (6.33), the average number of ob3ervations ASN(k) required for termi-

nation when Hk is true can be easily derived. The derivation is similar

to the binary hypothesis case and the result is given by

ASN(k) - N o/PT(k) (6.34)

The average error probability Pr(e) and the average sample number ASN

can be derived by averaging Pr(e/H k ) and ASN(k) respectively to obtain

M-I1 M- 1

Pr(e) M-7 Pr{H k is true} Pr(e/Hk) I M-1 Pr(e/Hk) (6.35)

k-0 k=0

M-1 N M-1
ASN Pr{Hk is true} ASN(k)= - T _ (6.36)

k=0 k-0 T

As in the binary hypothesis case,it seems that we cannot find the

optimal package size N* analytically and numerical techniques must be
0

considered. However, it can be shown that P T(k) is a monotonically

increasing function of N . Therefore, given the value of Pr(e), we can0

find the optimal package size N* by keeping Pr(e) fixed while minimizing
0

ASN over the set of possible package sizes. As is evident from the

numerical results obtained, the optimal package size is less than N FSS/4

for Pr(e) 10- 6 . Moreover, the ASN does not change considerably as a

result of small variations in the package size, i.e., the ASN is a

relatively flat concave function of N 00

6.4. Truncation of the Test Procedure

As was pointed out in Sections 6.2 and 6.3, the number of observation
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packages necessary for the termination of the global test is a geometri-

cally distributed random variable. Therefore, the GDM will reach a deci-

sion in a finite number of trials (packages). However, the GDM may re-

quire an excessively large number of trials before a decision is reached.

In other words, the number of trials required is an unbounded random

variable. To avoid such undesirable situation, a reasonable truncation

scheme is usually necessary. The analysis of the truncation problem

associated with Wald's SPRT is difficult (31-33) and either approximate

expressions or bounds are available for both the error probabilities and

the ASN. The truncation problem for the generalized SPRT in (25) is even

more difficult and no truncation analysis is reported. For the

memoryless sequential procedures under consideration, the exact distribu-

tion of the global test duration given the hypotheses is known and

simple. Therefore, the resulting truncation problem is simpler to

analyze. In this section, we propose a truncation scheme and analyze its

performance for the decentralized binary hypothesis testing problem. The

M hypotheses case can be treated similarly.

The proposed truncation scheme can be described as follows: At any

stage k(k : m), a package of N observations is taken at each LD. The0

resulting local sufficient statistics TN (EN) and TN (YN) are com-
0 0 0 0

pared with the thresholds A* and B*, where A* > A and B* < B (see

definitions of A and B in equation (6.6)). The monotonicity of the LR

function of the sufficient statistics guarantees lower error proba-

bilities than cc and P. The global test is carried out sequentially in

the usual manner. If no decision is reached up to the mth stage, each

local detector is allowed to take one more package of N observations.0

The choice of equal package sizes at all stages is necessary only to
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simplify the implementation of the test. At the truncation stage, the

local test statistics are computed and single threshold tests are

performed as follows:
U =1

T (xt
N (N u=

(6.37)
U =i1

TN (YN) 2 t0

0 0 2

where u. = i means that the jth, j=1,2, local decision is in favor ot H.,
I I

i=0,1. The fusion rules possible at the truncation stage are AND and OR

rules. The symmetry of the problem implies that these fusion rules have

identical performance at aT and PT' wheze aT and PT are the error proba-

bilities at the truncation stage with aT = PT > a = 0. We assume the AND

fusion rule here, therefore, the global decision u is H1 if and only ifg

u, - u2 - 1 and u is H0 otherwise. Consequently, we may writeg0

'T = 'l C2  4Na

0
and

N t
6 = ( 1 5 a-04 d (

iT 1,. 2 4-N
-1T  -1 • (1-f3 2 ) = ( -3 ) (4 a

0

Equating aT and PT' it follows that the threshold t in (6.37) is the

unique solution of the equation

N0 -t
t- ( } ) (6.38)

4IN (I 4N ar
0 0

Similarly, in the case of an OR fusion rule, it can be easily shown that

the threshold t' is the unique solution of the equation
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t1 ) )}2 (6.39)
'IN 0r 4N aT

0 0

Let 4NO-t' = t, we obtain
0

NO -t
0 t1 -4 ( , {l - )} ( -, )12 (6.40)

40aN 0C(

which is the same as equation (6.38). Therefore, we conclude that the

performance of the AND and OR fusion rules is the same and that their

thresholds are related by

t = 'N8 - t (6.41)
o o a

where t and t are the thresholds associated with the OR and AND fusion
o a

rules at aT - PT respectively.

The expressions of the global error probabilities a and 0 for the pro-

posed truncation scheme are obtained by averaging their values at all

stages as follows:

a= = a* * Pr{T < mN o/H0} + xT 0 Pr{T > mN o/H } (6.42)

where T denotes the global test duration. Equation (6.42) can beg

written as

S- 3 = a*i- (1-p 2 -p* ) M] + .T [1-p*2 -p*2]m (6.43a)
0 1 0 1

a"I= cX* + (aT-X*) + [i-p*2-p*2 m  (6.43b)
T0 1

from which it is obvious that by increasing m, the coefficient of ( T-a*)

decreases monotonically. Consequently, there exists an integer m such

that a 5 1 < a - 1.
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T
The ASN of the truncated sequential procedure, denoted by ASN , has

the same value under both hypotheses given by

ASNT No - p _p 2 1- + (1 - p*2 _ p*2) (6.44)

k=O 1 0 1

Simplifying equation (6.44), we obtain

1 - (1 -p _{)
T 0* 1P2

ASN = N (6.45)
o (P *2 + p*2)0 1

where m is the truncation stage. From (6.45), it is evident that ASN
T

depends on the choice of N as well as the thresholds A* and B*. The0

optimization of the package size N for a given A* and B* is simple and0

can be done in the same way used for the untruncated test. On the other

hand, if we fix the package size N , then an optimal choice of A* and B*
0

is not simple due to the continuous nature of the variables A* and B*.

The minimization of ASNT requires an optimal choice of both N and the

thresholds A* and B*, which is not easy to accomplish. However, it

should be emphasized that the superiority of the sequential test

procedure over the optimal FSS test procedure implies that the truncated

sequential procedure must have a higher average sample number than its

untruncated counterpart, i.e., ASN T > ASN. This is so because the

truncated test is actually a mixture of both the sequential and FSS test

procedures. Consequently, a reasonable truncated sequential procedure is

obtained when ASNT ASN as demonstrated in the numerical results.

6.5. Numerical Results

In this section, we present some of the numerical results obtained.
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The observation model for the binary hypothesis case is as given by (6.1)

with 8 = 0.2 and G2 = 1. We denote by N FSS and NFSS2 the number of

observations required by the optimal fixed-sample-size distributed system

consisting of one and two local detectors respectively. Similarly, we

denote by ASN 1 and ASN 2 the average number of observations required for

the termination of the global test when one and two local detectors are

employed respectively. The numerical results obtained for different

values of error probabilities are summarized in Table 6.1. These results

indicate that for small values of error probabilities (c=3), our distri-

buted sequential procedure is far more efficient than the distributed FSS

system and that its efficiency (ASN2/NFss2) improves monotonically as

the error probabilities decrease. Moreover, our distributed procedure

requires less than 60% of the ASN required by the Lee-Thomas (21) MLGDS

procedure.

The observation model for the M hypotheses case is as given by

(6.23) with 8 = 0.2, a2 = 1, and M - 10. In Table 6.2, E(n) denotes

the average sample number of the sequential test in (25]. The

numerical results obtained for some values of the error probability are

given in Table 6.2. From these results, it is evident that the

increase in the ASN due to both grouping of the observations and the

memroyless nature of the test procedure is less than 25% of E(n).

Moreover, the distributed system requires approximately 60% of the

average number of observations (ASN ) required for the termination of

the single sensor icheme in [271, which is quite an interesting result

knowing that the centralized processing necessarily requires 50% of

ASN1.

Finally, the proposed truncation scheme is applied to the binary
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hypothesis case with the same parameters used in obtaining Tables 6.1.

The optimization is performed by first choosing slightly smaller values

of cx* and P* (a* = P*) than the specified values of (x and 0 (Ot=f3). The

package size N is then varied while adjusting the thresholds A* and B*0

such that OL* and P* are fixed for all values of N . The resulting ASNT
0 2

is calculated for all values of N and the minimization is obtained by

T
selecting the package size that yields the minimum of ASN2. In Table

6.3, we give the values of cX*, xT , cc, the termination stage, ASN 2, and

ASNT for some values of a and P. Comparing the values of ASNT and ASN

we observe that they are almost equal for all values of a and 1 (c=1)

The maximum difference B = ASNT - ASN is obtained for cX==10 - 6 and is
2 2

equal to 2.2 observations, which corresponds to a percentage increase

(8/ASN 2) x 100% 0.37%.
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Table 6.1. Results for the binary hypotheses case, 0=0.2, az=l.

a=0 NFSS1 NFSS2 ASN 1  ASN 2  ASN IN FSS ASN 2/NFss2 ASN 2/ASN 1

10- 4  1383 967 664.2 405.7 0.48 0.42 0.611

10- 6  2259 1593 993.5 598 0.44 0.375 0.602

10- 8  3149 2231 1310.5 780.1 0.416 0.35 0.595

10- I0 4046 2875 1619.8 955.3 0.4 0.332 0.59

10- 1 2  4948 3529 1922.7 1125.8 0.39 0.32 0.585

10-14 5853 4183 2220.8 1295.1 0.38 0.31 0.583

Table 6.2. Results for the M hypotheses case, M=10, 0=0.2 and a2=1.

Pr(e) NFSSI ASN 1  ASN 2  E(n) ASNI/NFSSI ASN1 /E(n) ASN2 /ASN 1

10- 4  1494 823 511.6 666.5 0.551 1.235 0.622

-6
10 2373 1162.1 711.1 934.3 0.49 1.244 0.612

10- 8  3264 1489.8 899.2 2296.4 0.546 1.245 0.604

10- I0 4162 1806.0 1080.7 1454.8 0.434 1.241 0.598

10- 1 2  5064 2115.8 1255.8 110.6 0.418 1.237 0.594

10-1 4  5969 2420.3 2427.2 1964.4 0.405 1.232 0.589
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Table 6.3. Results of the proposed truncation scheme, M=2,0=0.2

and 2=i.

T -~ Truncat ion AST
a* =T O T istage m ASN 2  ASN 2

9.5xi0 -5  1.755xi0 - 2  0.996x10- 4  6 405.7 406.8

-7 -3 -
9.473x10 4.05xi0 0.988x10 6  7 598 600.2

-9 -3 -
9.591X10 1.22xi0 0.99xi0 8  9 780.1 781.5

9.573x10 - ! 1 3.55x10 - 4  0.967X10- 10  11 955.3 957.1

9.534x!0 - 1 3 1.08x10 - 4  0.971x10-12  12 1125.8 1128.2

9.478xi0 15  3.83x!0 5  0.966x10 1 4  14 1295.1 1296.8

6.6 Discussion

In this chapter, we have extended the results of Lee and Thomas (21]

to a distributed system consisting of two local detectors. The resulting

sequential procedure exhibits the simplicity of the FSS test procedures

while maintaining the performance superiority of the sequential pro-

cedures as is clear from Table 6.1. In addition, we have considered the

case of M hypotheses3 without increasing the complexity of the test over

the binary hypothesis case. The numerical results obtained for M

hypotheses show clearly a substantial saving in the average sample number

at the local level as a result of decentralization. Consequently, on the

average, the decision (detection) process is much faster. The numerical

results obtained for the truncation scheme indicate that its effect on the

average sample number is very insignificant. Therefore, the test is

practically realizable in the sense that its duration is bounded. Fin-
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ally, it is worth mentioning that the distributed system can be gener-

alized to have more than two local detectors and different fusion rules.
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CHAPTER SEVEN

NONPARAMETRIC SEQUENTIAL DETECTION BASED

ON MULTISENSOR DATA

7.1. Introduction

Several attempts have been made in the literature to combine the

desirable properties of nonparametric fixed-sample-size (FSS) tests and

the advantages of sequential tests. The Kassam-Thomas dead zone limiter

(DZL) (35) is a generalization of the classical FSS nonparametric sign

detector [36,37]. The DZL in (35) exhibits performance superiority over

the FSS sign detector. This performance gain is achieved at the expense

of additional implementation complexity. A read-only-memory (ROM) is

required for the implementation of the test in (351. For small values of

error probabilities cc and 3, where a is the probability of error of the

first kind and 0 is the probability of error of the second kind, the size

of the ROM required is 3arge and hence, the complexity increases as a and

P decrease. The performance of the DZL in (35) has been further improved

by Shin and Kassam [22] by means of sequential testing. The sequential

test in (22) called conditional sequential DZL is similar to the

sequential probability ratio test (SPRT) of Wald [l), and it requires ROM

accessing and a two threshold test after each individual observation.

This greatly increases the complexity of the test. This added complexity

motivated Tantaratana and Poor (24) to consider a two- stage version of

the conditional sequential DZL test in [22] to reduce the implementation

complexity while retaining the performance superiority of the sequential

tests. Tantaratana (23) considered the formulation of the conditional

sequential DZL in (22) as a simple random walk between two fixed absorb-

ing boundaries. His formulation does not require the table look-up oper-
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ation and, therefore, the implementation of the test is much simpler. The

restriction of the random walk formulation to the simple case in which the

positive step is equal to the magnitude of the negative step is not

suitable and leads to undesirable increase in the average sample numbers

(ASN'S). In fact, it can be easily shown from the theory of random walk

[29] that for small number of states as in (23], a truncation is neces-

sary to limit X from becoming much larger than its prespecified value.

However, the truncation scheme in (23] is based on the number of

observations whose magnitude is larger than a fixed real number.

Therefore, the truncation in (23] has no effect on limiting the actual

number of observations from being excessively large. Moreover, it should

be mentioned that if no truncation is employed, then the simple random

walk formulation (29] requires a large number of states thereby leading to

a substantial increase in the average number of observtions required for

the test termination under both hypotheses.

In this chapter, we show that the conditional sequential DZL in (22]

can be implemented without the need for the table look-up operation. In

other words, we can sequentially test against two fixed thresholds which

can be chosen prior to the test. The threshold design is the same as that

of the SPRT [1]. In Section 7.3, we study the formulation of the test as

a random walk without a restriction on the steps to be equal. In Section

7.4, we generalize the nonparametric sequential sign test to a distributed

system consisting of two local sensors and a global decision maker as

shown in Fig. 7.1. In Section 7.5, we derive a conditional sequential DZL

detector for the distributed system in Fig. 7.1. It is shown that if the

observations are spatially independent and have identical distributions,

and that no excess over the thresholds is assumed, the resulting tests
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Global

Decision uf

Y.Maker

Local Sensor #2 22

Fig. 7.1: A distributed system consisting of two local sensors

followed by two local quantizers and a global decision maker.
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require half the number of observations required for the single detector

in [22]. In Section 7.6, we present a numerical example for the

nonparametric sequential sign test. Finally, in Section 7.7, we conclude

the chapter with a discussion of the results obtained.

7.2. The Nonparametric Sequential Sign and Conditional Sign Tests

Consider the problem of detecting a constant signal 0 corrupted by an

additive noise. The noise pdf is assumed to be symmetric, continuous, and

with zero mean. Let X1, X2f ... be a sequence of iid ramdom variables

which represent the successive observations. This detection problem is a

problem of testing the null hypothesis H0 against the location alternative

HI. where

H0  :X. ~ f(x)

(7.1)

H1 : X ~f(x-O) 1 > 0

with f(x) = f(-x). We denote by xI , x2 ,... a realization of the obser-

vations X, X2.... LetX = [x x2 ... X be a vector of observations

of size n.

The sequential sign test in (36) is a SPRT performed on the sign of

the observations. Each observation x. (i > 1) is passed through a hard

limiter whose output is given by

S+1 if X. > 0

Y. 1 if(7.2)

-1 if x. < 0

Let

P0 = Pr(Y. = + 1/0) = 1 - F(-O) (7.3a)
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q9 = Pr(Y, = - 1/0) - F(-8) (7.3b)

x

where F(x) = f(t)dt. It follows that for any pdf f(x) as defined

earlier, the hypothesis testing problem is now given by

H Y~ = 1/2)

(7.4)

H : Y. ~ B(pe > 1/2)

where B(p) is a Bernoulli random variable with probability of success

(Y.=+1) equal to p, and probability of failure (Y.= -1) equal to l-p=q.1 1

When H (0 = 0) is the true hypothesis, the distribution of the quantized

observations is invariant in the class C of continuous, symmetric, and

zero mean pdf's. It follows that a SPRT based on Z. 's is nonparametric1

(36), in the sense that it has a fixed a for any X CC. Following Wald

[1), the SPRT based on the Y.'s is as follows.1

n log (1-0)/a = log t, decide H1n A u'1

Z . < log 1/(1-a) = log t, decide H (7.5)I otherwise, continue.
f(y i/Hl )

where Zi = log f(Yi0 , f(yi/H,) is the probability density function of

the discrete random variable Y, when the hypothesis H.,j=0,1, is true, and1 J

t and t are the upper and lower thresholds respectively. Let n be theu p

number of positive observations at stage n, and let P be an estimate of

p0 which we use in designing the test. The random variable Z. in (7.5)
1

assumes the value log(P0 /(1/2)) when Y.=+l and the value log((l-p 0)/(/2))

when yi = -1. Therefore, equation (7.5) can be written explicitly as

I log t ,decide H1

n log(2 0 ) + (n-n p) log 2ti-p j !5 log tt , decide H0  (7.6)

otherwise, continue.
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where n is the number of observations such that Y. is positive and n is

the total number of observations taken so far. Neglecting any excess

over the test thresholds upon termination. The average sample number

(ASN0), defined as the average number of observations required for

termination when 8 is the true parameter is approximated [1] by

L(8) log tX + [1-L(8)]log t

ASN E[Z (77)

where L(8) is the operating characteristic (OC) function of the test, and

1-L(O) is the power function of the test. To obtain L(O), we solve the

parametric equation

f(y I/H )h(O)

TI f (Yi/H h (A )iOi

where the summation is over all possible values of yi, and f(yi/8) is the

pdf when 0 is the true parameter. Wald (1] has shown that h(O) is unique

and that L(O is given in terms of h(O) by

h(O)t -1

L(O) = uh(8) (7.9)

u £

In our particular case, the random variable Y. assumes the values ± 11

only. Therefore, we can write equation (7.8) as follows:

pO(20) h (O ) + q0 (2(1-P8 ))h (O )= 1 (7.10)

where P8 = Pr[Yi = 1/8] and q, l-p8 " From the definition of Z. in (7.5),

it is clear that E[Z./0)] is given by
1
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E[Zi/O)l p0 * log 2P, + q log 2(1-PO) (7.11)

when H0 is true (0=0), it follows that p0 - q0 - 1/2. Therefore, h(0)=l

and L(0)=l-L. Similarly, when p0 = P8 (our estimated value), it follows

that h(5) = -1 and L(6) = I, which means that the power of the test is

1-P as required.

The conditional sequential DZL detector is similar to the sequential

sign detector. The only difference is that it employs the following DZL

quantizer

+1, if x. > c
1

Y. 0, if -c x. c (7.12)1 1

Let ~-1, elsewhere

Pe = Pr(Y. + 1/0) - 1 - F(c-0) (7.13a)

= Pr(Y. = - 1/0) = F(-c-0) (7.13b)

r = Pr(Y. = 0/0) = 1 - Po - qO (7.13c)

When H0 is tr e, (0=0), it follows that p0 
= q0 for all X EC. However,

the actual value of p0 depends on f(x) as given by (7.13a). In order to

obtain a nonparametric test we must base our test on a random variable

whose distribution is invariant to f(x) when H0 is true. Let us define W0l

as follows

W = sgn(Y./Y = ± 1) (7.14)
.. 1 1

Clearly, W. is a random variable defined on the set of observations such1

that Y. = ± 1. Given that an observation Y. is in that set, the con-1 1

ditional distribution of W. given the hypothesis is as follows
1
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H0 : Wi ~ B(p6 = 1/2)

(7.1-5)

HI : W.i - B(p6 > 1/2)

where p6=p0 /(p+c%). When H0 is true (0=0), it is clear that p0 /(p0+q0 ) =

1/2 and consequently, the test based on W. is nonparametric. The SPRT
1

based on W. 's is similar to the sign test, the only difference is that when1

Y. = 0, the observation is ignored. Let m be the number of observations1

of W., i.e., m is the number of observations such that Y. = ± 1. It1 1

follows that the ASN expressed in terms of m is given by (1]

L(O) log tz + [1-L(0)]log t
ASN (in) = u[i/](7.16)

0C Eiz/0]

f(wi/H1 )
where Zi = log f(w I /H) , and L(O) is computed using (7.7) and (7.9)

i 0
after replacing yi with w.. Observe that the observations Y. = 0 have no1 1

effect on the power of the test simply because they are not included in

the computation. However, those observations have a major effect on the

ASNM when computed on the actual (unconditional) observations. Observe

that ASN0 (m) is the average sample number conditioned on the event Y.=±l.1

To derive the actual average sample number ASN., we observe that the

event Y.±--_l has a probability of occurrence equal to (p6 + qj) for any

individual observation. Therefore, for any vlue of ASN0 (m), say k, the

distribution of the actual number of observations N is the Pascal (nega-

tive binomial) distribution as given by

1n-l)k )n-k
Pr(N=n/ASN (m)=k) = k (p+q) 0 (l-p - , n=k,k+l... (7.17)

k-i pq
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The actual average sample number ASN is obtained by averaging over all

possible values of N. The result is known and is given by

ASN (in)

N A0 = (m) (7.18)
0 (O+ CIO)

7.3. Random Walk Formulation of the Tests

Both the nonparametric sequential sign and conditional sign tests de-

scribed in Section 7.2 employ a two-valued discrete random variable for

testing as is evident from (7.4) and (7.15). It follows that these

sequential tests can be easily implemented as a random walk on a finite

number of states as described in Chapter Two. Tantaratana [24) con-

sidered the case in which the nonparametric sequential conditional sign

test is formulated as a simple random walk on the states Sl,...,s N

as shown in Fig. 7.2, The states S0 and SN are absorbing states with

associated decisions H0 and H1 respectively. The states S0, SI,...,SN 1

are all transient with an associated decision of continue in an analogy

with Wald's SPRT [1]. Initially, the process starts at state SZ, O<Z<N,

and it goes one step higher (A+ = 1) if the current observation is posi-

tive and one step lower (A- = 1) if the observation is negative. As soon

as the process reaches one of the absorbing states S or SN, the test

terminates with the acceptance of the hypothesis associated with that

state. The results for equal step random walk [29] can be used in con-

junction with the observation model of (7.4) and (7.15). It is well

known (29] that for a process starting at S., the probability of absorp-

tion in state S0 is given by
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Decide H0  Decide H1

q q q q

so $, S2S'-2 "- SN

Fig. 7.2: An (N+1) state random walk process with A+ = A =1.
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Uz = N (7.19)
1- (q/p)N

where q = Pr[A-} and p = Pr{A+}. When H 0 is true, we have q0 = P 0 = 1/2,

therefore, we obtain

plim u Z  (7.20)q/p-4 "l

On the other hand, when H1 is true, we substitute for q and p their

estimated (nominal) values and 0 from (7.6), to obtain

z_ N

1- N (7.21)1-N

The random walk formulation of the test requires the specification of both

Z and N such that a and P are satisfied at the nominal parameter values.
-i

However, it is obvious from (7.20) that for Z-l, we must have N- ,

therefore, the number of states necessary to satisfy a is extremely large

for small values of a. On the other hand, for sufficiently large N, we

can neglect the term (/ 0 ) N in equation (7.21) to obtain

13 (%/P) (7.22)

It follows from (7.22) that Z a log (- 1)/log(%/P,), and thus, Z must be

greater than one, in general, yielding a further increase in the number

(N+1) of required states. Consequently, the average sample number, which

is directly related to N, is very large. To overcome this highly un-

desirable property while still maintaining implementation and analysis

122



simplicity, we propose to allow the magnitude of the negative step to be

twice that of the positive step, i.e., A- = 2, and A+ = 1 as shown in Fig.

7.3. According to Fig. 7.3, the states S and S1 are absorbing states and

associated with H0 decision while SN is an absorbing state associated with

H1 decision.

Starting the process in state S., 1 < j < N, we can express theJ

probability of absorption in state SN as follows:

U. = puj+1 + qu _2

UN = 1 (7.23)

u0 - u I = 0

where u., 0 < j < N, is the probability of absorption in state SN start-

ing from the state S. and p(q) is the probability of positive (negative)

step. Using the method of particular solutions, we obtain

u. = A + B(xl)J + C(x2)J
1 2

u N =1 (7.24)

u0 =u = 0

where A,B, and C are constants to be determined from the boundary condi-

tions u0, Ul, and uN, while xI and x2 are the roots of the second order

homogeneous equation

px 2 
- qx - q = 0 (7.25)

Solving (7.25), we obtain xl=(q + 4q2 + 4pq)/2p and x2 =(q - 4q 2 + 4pq)/2p.

Substituting the boundary conditions in (7.24), we obtain 'or j=Z that
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Decide HO~ Decide HI

q q q

p, S, p p"

SS SS 3  SN-2 5 N-1 SN

Fig. 7.3: An (Ni-I) state random walk process with A + =1 and A- =2.
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(xi-x2)/( l - ((1-x )/(i-xl)) x + x 2

Uz = N N (7.26)
(x - x2 ) / ( I - . ) ((l-x 2 ) / ( l - x ) xIN + x2N

i2 12 1 1 2

Let ., i=0,1,N, denote the probability of absorption in the state S.

starting from the state SZ ' Therefore, N is equal to uz as given by

(7.26). The probability cf absorption in the state S is obtained by

solving the following stochastic difference equation

u. = puj+ 1 + quj-2

u0 = 1 (7.27)

U I = uN = 0

whose solution is similar to that of (7.23) and the result is given by

N-i N-I N-I Nlx-)(~I- I

x (x -x )/(l-xN )-((x / )) -)/( N-1 Z Z
2 2 1 2 1 2 1 (7.28)

-iN-i(N-i)N-
x (x N-x- )/(i-x N1)-((x )/(x ))lxN-i /(- N-i17.8
2 1 2 1 2 1))1-2  )/(- 1 )+1

Because the process will ultimately be absorbed in one of the absorbing

states, it follows that

41 = 1 - 40 - 4N (7.29)

The average number of steps until absorption when 0 is the actual

parameter is denoted by ASN and is given by [301 by

F. 4i (-z) 4 Ui(-z)
ASN = I i ; i=0, 1,N (7.30)e p 8A -q0 A 3 pe -2

where p0 and q, are as defined in (7.13)

The 1umber of states N+i and the starting point Z must be chosen such

that when H0 is true (p0 = 1/2), we have uN < a and when H, is true (p,

we have 4N > 1-0. Although we have so far considered a single
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detector case, our results can be extended to the case of two detectors

in a straightforward manner. The only problem encountered is that the

roots of the stochastic difference equation governing the random walk can

not be obtained analytically and, therefore, numerical solutions must be

considered. Equation (7.17) shows that the actual ASN 0 is a function of

the pdf of the observations and the parameter of the DZL, which can be de-

signed to satisfy some criterion of optimality [22] without affecting the

nonparametric property of the test. It should be emphasized that the

test is performed sequentially on the set of observations IX. I > c in
1

exactly the same way the sign test is performed, without any need for the

table look-up as it was originally required by Shin and Kassam in 122].

7.4. Distributed Nonoarametric Sequential Sign Test

In this section, we generalize the nonparametric sequential sign test

in [22] to a two-sensor distributed environment. The system is as shown

in Fig. 7.1. It is assumed that the observations at the kth sensor,

k-1,2, are iid random variables with a continuous, symmetric, and zero

mean pdf f k(x). The observations are independent from sensor to sensor,

i.e., Xil is independent of XZ2 for all ij. The detection problem is,

therefore, a hypothesis testing problem in which the hypothesis H0 is

tested versus the hypothesis H1 according to the following model

H : Xik - fk(x)

k=1,2 (7.31)

H1  Xik - fk(x-0k)

with f k(x) = f k(-x), and 0k > 0, k=1,2. Each local sensor quantizes its
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own observation into two levels as given by equation (7.2), and

communicates the quantized output to the central detector. The central

detector combines the quantized observations and performs the SPRT. From

the central processor joint of view, the hypothesis testing problem in

(7.31) is as follows:

H : Yik B(1/2)

k=l,2 (7.32)

H1 Yik B(Pk)

Let

Pk = Pr(Y ik + 1/0k) = 1 - Fk(-Ok) (7.33a)

qk = Pr(Yik = - 1/0 k) = 1 - F k(- k ) (7.33b)

x

where Fk (x) = fk(t)dt. Observe that for all XkCC, the distribution

Yik is invariant under the hypothesis H Let Vi be an observation

vector with Yil and Yi2 as elements, i.e.,

T
V = (Y Y 2 ) (7.34)

Let f(v./H.) be the pdf of V' when Hj, j=0,1 is true. Then, we have

f(v./H.) = f(y il/H ) f(y i2/H) , j=0,1 (7.35)

It should be emphasized that the distribution of V. when H0 is true is

also invariant to changes in the pdf's of the observations Xik, k=1,2 as

long as X ikeC. Consequently the SPRT performed on V. is nonparametric

(constant (X). Let Vl' E2 .... be a sequence of successive central obser-
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vations. The SPRT at the central level in (1] as follows:

> log t , decide H 1

nT Z. _ log te , decide H0  (7.36)
otherwise, continue.

where Z. log (f(v i/H )/f(v i/H0 ). From (7.36), it follows that

n
Z. = log~f(Yik /H1 )/f(Yik /H0) (7.37a)

or,

Zi =Zil + Zi 2  (7.37b)

From (7.37), we observe that

E(Zi/01,O 2 ] = E(Z il/0 1 + E(Z i2/0 2 (7.38)

Following Wald [1] in assuming no excess over the thresholds at

termination, the ASN(0!,02) is given by

ASN(010 ) (1, 2) log tZ + [I-L(0 1 ,0 2 )] log tAN ,2 E(Z i/0l (7.39)

where L(0,0 2) is the OC function, which is now a function of 01 and 02 .

To obtain L(01,0 2), we need to solve equation (7.9) for h(0) h(Olo 2)
T oA
h. However, h(0,0 2 ) = h is obtained as the unique nonzero solution

of equation (7.8) which can be written explicily in terms of the four

possible values of Z. as follows:

h h
plP2 LIiP 2 ]) + p1q2 (4P1 2  + qlP2[44l2] + q1q2142] = 1 (7.40)

where Pk and qk l-Pk are the estimated values used in designing the

n
steps of the random process J1 Zi , while pk and qk -=-Pk are the
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actual parameters. Once h(01,0 2) is computed, we can solve (7.9) to

obtain L(0,8 2). From (7.40) we observe when H0 is true (81=8 2=0),

h(0,0) = 1. Therefore, L(0,0) = 1-(f as expected. Similarly when

81=9 I and 8 2= 2 (the actual parameters equal to their estimates), then

h(81,82) = 1 Therefore, h(01,02) =

Finally, if the observations Xil and X i2(i 1) are independent and

identical, then equation (7.38) is as follows

E[Zi/02=0 1 = 2 E[Z il/0 ] (7.41)

Consequently, it follows from (7.41) that for the same power of the test,

the ASN (810 02: = 2) is exactly half the ASN in the case of one

sensor (detector). However, this result is drawn under the assumption of

no excess over the thresholds which is true only for vanishingly small

signal strengths (8 = 2= 0). Moreover, it should be mentioned that when

Xil and Xi2 are iid, the computation of the OC function is identical to

the single detector case as given by (7.8).

7.5. Distributed Conditional Sequential Sign Test

We consider generalizing the conditional sequential DZL detector of

Shin and Kassam (22) to the distributed system of two sensors shown in

Fig. 7.1. The observations are as defined earlier in Section 7.4. The

only difference from the sign detector is that the quantizers are now

DZL's as defined in (7.12). For clarity, we rewrite (7.12) and (7.13) to

obtain.

+ ,if xik > c

Yik =  0 , if -c Xik 5 c , k=1,2 (7.42)

-1 , elsewhere
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and

P0k - Pr{Yik = + i/0k = 1 - F k(C-0 k ) (7.43a)

q k = Pr{Y = - 1/0k} = Fk(C-0k) (7.43b)

rOk = Pr[Yik k0/0k' = 1 - Pk - k (7.43c)

When H0 is true 01=0, 0, it is clear that p01 = q01 and p02 = q02

for all X CC, with actual values being functions of the actual pdf's as

is obvious from (7.43). In order to obtain a nonparametric test, we need

to think in terms of conditional tests. To this end, we arrange the

observations of the central processor into three groups as follows:

i) Group 1: contains all possible combinations of Yil and Yi2 such

that Yil= ± l and Yi2 = ± 1. In this group, it follows from the

independence assumption that

Pr(Y = I' Y =i V/Y =±l andY -±1) =

(7.44)

Pr(Y = 11/Y = ± 1) * Pr(Yi2 = v/Y = ± )

where Tj = ± 1 and V = ± 1. When H0 is the true hypothesis, equation

(7.44) reduces to

Pr(Y = 1, Yi2 - V/Y - ± 1 and Y. = ± 1) = 1/4 (7.45)

for any of the four possible events in the group. Similarly, when H1 is

true, we have

Pr(Yil = 1' Yi2 = V/Yi = ± 1 and Y = ± 1)

Pr(Yil TI/H 1 ) Pr(Yi 2 = V/H1)
• (7.46)

01 01 1 02 02
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where P k and q k are the estimated values of the parameters Pk and k

as defined in (7.43).

ii) Group 2: contains all possible combinations of Yil and Yi2 such

that one aud only one of them is zero. When Yi2 = 0, we obtain

Pr(Yil= TI, Y i2= /Y i= ± 1 and Y i2= 0) = Pr(Y il I/il (7.47)

Similarly, when Yil = 0, we obtain

Pr(Y = 0, Yi2 = v/Y = 0 and Y = ± 1)=Pr(Y i2= v/Y = ±1) (7.48)

It is interesting to observe that when one of the sensors has its observa-

tion in the dead-zone region i.e. IXik I < c, we obtain the desired condi-

tional distribution by simply not counting that sensor (ignoring its cur-

rent observation). From the results of the single detector case [22),

the test is still nonparametric.

iii) Group 3: contains the observation Yil = Y = 0, which must be

ignored.

From (7.44) - (7.48), it follows that the increments by which the

logarithm of the likelihood ratio function is updated depend on the

random variables Yil and Y i2 When Yil and Yi2 are in group 1, the

increment is a random variable given by

2Pr(Yil = I/H
Z. =log +

1P8 + 8

01 01

(7.49)

2Pr(Yi2 = T/H1
log ~ + 1 whenY = i  and Y = V

P02 q02
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However, when Y = 0 and Yi2 = v, the increment is given by the second

term in (7.49) only, and when Yil = and Y = 0, the increment is given

by the first term of (7.49) only. Therefore, the observations as seen at

the central level are not identical at all stages of the test. Conse-

quently, it is difficult if not impossible (3] to solve for the

ASN(O, 2 ). Moreover the computation of the OC function is also diffi-

cult, because upon termination we do not know the exact number of usable

observations obtained by any sensor. To overcome this difficulty, we

assume that the observations are identical at both sensors, and propose

to perform the central test by considering Y first, and then Y.2' at

all stages (i 1). Ir. this case, the OC function is the same as for the

single detector case previously described. The ASN0 is given by the

following inequality

2ASN 1 ASN8 2 [ASN1 + 1] (7.50)

where ASN is the average sample number for a single detector when 8 is

the actual parameter.

7.6. Numerical Results

we first present an example of the random walk formulation of the

sequential test discussed in Section 7.3. The nominal observation model

is given by:

H0 : X ~ N(0, a2 )

, i 1

H I : X ~ N(0, a2 )

where N(0, <2) is a Gaussian random variable with mean 0 and variance &,

The nominal value of 0 is assumed to be 6 = 0.676 while the variance O&

is assumed to be unity. The quantizer nonlinearity is as given by (7.12)
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with an optimal (22) value of c = 0.6, which yields a nominal value of p6

given by P = 0.84. Using Wald's approximation to the thresholds, we

obtain

N-Z in (i)/in 2P

and

Z in ( )/ in 2(1-N)

For a = 10- 3 , we obtain N-Z 13.3 and Z = 12.12. The actual values

-3 -3
required to satisfy a : 10 and !5 10 at the nominal value of 8 are

N = 27 and Z = 12, which are obtained by an exact solution of (7.24).

Presented in Table 7.1 are the numerical values of the power function

P D() and the average sample number ASN(O) obtained for some value of 0

in the range 0 5 0 5 8, i.e., 0.5 p6 P6.
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Table 7.1: Performance of the sequential DZL detector when implemented

as a random walk

8 p6 P D(8) ASN(8)

0.676 0.84 0.99903 45.62

0.619 0.82 0.9974 52.44

0.567 0.8 0.9936 60.95

0.518 0,78 0.985 71.7

0.45 0.75 0.951 93.38

0.348 0.7 0.735 140.33

0.167 0.6 0.0481 91.04

0.1 0.56 0.0094 63.12

0.066 0.54 0.00404 53.96

0.034 0.52 0.00173 46.94

0.0 0.5 0.00073 41.43

Next, we present some numerical results for the nonparametric sequen-

tial sign test described in Section 7.4. The observation model is as

follows:

H X ~N(0, 2 )C ik k

, i t 1; k=l, 2

H X. .N(0 a2)1 ik k' k

where N(O 02) is as defined earlier. The nominal design values are
k' k

i = 0.525, 2 = 0.824, and (k - 1, k=1,2. The resulting values of
2 k

-3
are P -- 0.? and =2 = 0.8. The required value of a is set at a - 30,
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while the power of the test is required to be PD (61,2) = 0.999 at the

nominal (estimated) values of the parameters.

In Table 7.2, the parameters p 0 and P02 are varied such that their

effects on the power of the test are identical. In other words, the test

has the same power as if it is performed based on the observations of

sensor one alone or sensor two alone. In this case, it is meaningful to

compare the resulting ASN's as given in Table 7.2 below, where ASN k de-

notes the ASN considering only the kth sensor observations.

Table 7.2. Performance of the distributed nonparametric sequential

sign test.

PoI P02 P ,D(0I0 ) ASN ASN02 ASN(6l'62

0.5 0.5 1x10 3  79.07 30.89 22.21

0.5103 0.516 2x10-3  87.62 34.23 24.62

-3
0.5309 0.5486 7.89xi0 111.44 43.64 31.36

0.623 0.6915 0.8 243.18 97.89 69.8

0.6814 0.7753 0.996 103 43.24 30.45

0.7 0.8 0.999 83.77 35.76 25.06

0.744 0.854 0.99997 57.77 25.81 17.84

In Table 7.3, the parameters p6 l and P6 2 are allowed to change such

that their effect on the test power is not necessarily the same. We

denote by PDk' k=1,2, the power of the test performed besed on the obser

vations of the kth sensor alone. Observe that this situation is not en-

countered in the single detector case (22] where we have a single parame-
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ter to deal with. This case is intended to demonstrate the effect of the

parameter changes on the central test power.

Table 7.3. Performance of the distributed nonparametric sequential

sign test with unequal power functions.

PoI P02 PDl PD2 PD (81'(2)  ASN(81 '8f)

0.65 0.85 0.9633 0.99996 0.9997 22.86

0.75 0.75 0.99998 0.9854 0.9975 27.7

0.7 0.85 0.999 0.999996 0.9999 20.05

0.75 0.8 0.99998 0.999 0.9997 21.75

0.6 0.7 0.515 0.857 0.77 72.18

0.65 0.8 0.9633 0.999 0.9972 29.52

7.7. Discussion

The nonparametric sequential conditional sign test of Shin and Kassam

was investigated and it was shown that it can be implemented without the

table look-up operation as previously required. In addition, the above

test was formulated as a random walk on a finite number of states and

exact analytical expressions were derived for both the test power and

average sample number functions. Both the sequential sign and condi-

tional sign nonparametric tests were generalized to a distributed system

of two sensors and shown to maintain the desired nonparametric property.

It was shown that when the observations of the two sensors are iid, the
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distributed system requires half the number of observations required by a

single sensor. Thus, it has the desirable advantage of shorter decision

time in addition to the well known advantages of distributed detection

systems like reliability and survivability.
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CHAPTER EIGHT

SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH

8.1. Summary

In this report, we have considered some sequential hypothesis

testing problems where the detection network consists of a number of

local sensors and/or detectors. We have studied a centralized SPRT

based on quantized mutlisensor data, and shown its performance

superiority over the single sensor case. Moreover, we have studied the

issues of optimal quantization of local observations, channel errors,

and random walk formulation of the central SPRT.

A simple multi-sensor decentralized sequential detection procedure has

been investigated when no explicit fusion rule is employed. It has been

shown that its performance improves monotonically with the number of local

detectors. Next a distributed sequential detection system employing

explicit fusion rule has been considered.

The SPRT of Wald has been generalized to a distributed system

consisting of two local sequential detectors and a global decision maker.

The global error probabilities are derived in terms of the local error

probabilities and the fusion rule employed at the global decision maker.

Moreover, the global ASN is obtained in terms of the locl test lengths

and the fusion rule. In addition, we have generalized the Lee-Thomas

MLGDS detection procedure to the distributed system described above. The

results obtained in both cases show the performance superiority of these

distributed tests over their single detector counterparts.
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Finally, we have generalized the nonparametric sequential sign and

conditional sequential sign tests of Shin and Kassam to a distributed

system of two local sensors. We have shown that the distributed system

exhibits an improved performance over the single detector case and

maintains the desired nonparametric property.

8.2. Suggestions for Future Research

Throughout this report, we have assumed that the observations are

statistically independent and identically distributed at the local sensors.

However, in practice, the observations can be dependent both spatially and

temporally. Therefore, one fruitful area for research is to develop

suitable sequential detection schemes under the appropriate dependent

observation models.

Another possibility is to investigate sequential detection schemes for

different network structures such as serial and tree topologies.

Appropriate fusion schemes should be developed and system performance

should be evaluated.
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